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Abstract

I study the effect of the remote work shock on the spatial distribution of U.S. resi-

dential and commercial real estate prices. To do so, I develop a dynamic quantitative

spatial model featuring forward-looking migration and work-mode decisions, as well as

investment in office capital. I analytically characterize residential real estate demand in

terms of both current economic conditions and dynamic considerations, and show that

the effect of increased remote work on commercial demand consists of two competing

forces, yielding an overall ambiguous effect. I then quantify the impact of the remote

shock and find heterogeneous effects on residential prices, with gains in some regions

and losses in others, but widespread declines in commercial office values. Finally, I

evaluate place-based policies targeting the drivers of these price shifts and show that

welfare effects vary across locations and between the owners of residential and com-

mercial real estate.

Keywords: remote work, real estate, spatial equilibrium, dynamics

JEL Classification: E2, G1, R2, R3, R5

∗Department of Economics, University of Colorado Boulder, Lucas.Ladenburger@colorado.edu. I am
grateful to Alessandro Peri for his guidance and support. I thank Asaf Bernstein, Martin Boileau, Brian
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1 Introduction

During the COVID-19 pandemic, the share of the labor force working remotely increased

approximately threefold as individuals transitioned from working in the office to working

at home.1 Notably, the remote work share has remained significantly elevated, even after

the end of pandemic-related lockdowns. This persistent shift in working arrangements has

reshaped the demand for real estate across the United States through two interconnected

channels: (i) remote work decouples residential choice from job location, allowing workers

to live far from their place of employment; and (ii) firms require less office space when

employees work remotely. Regional exposure to these forces varied due to differences in

local fundamentals, such as technologies and amenities, as well as the initial equilibrium

distributions of labor and office capital.

In this paper, I study the effect of the remote work shock on the spatial distribution

of residential and commercial office prices.2 To do so, I develop a dynamic, quantitative

spatial model of remote work to analyze how an exogenous increase in the preference for

working remotely influences equilibrium prices of these two real estate assets. The model

features forward-looking workers who make decisions over both migration and work mode

(remote or non-remote), and purchase housing in distinct residential markets. In addition,

the model includes endogenous investment in new office space by immobile, commercial

owners, in response to evolving local market conditions. The distinction between residential

and commercial office prices bridges a gap in the literature, as existing studies of remote

work either treat these two asset classes as a single market or focus on one in isolation,

ignoring general equilibrium interactions across space and property types.

This paper makes three main findings. First, the remote work shock led to a modest,

short-run decline in average residential prices as remote workers relocated away from the

most expensive regions. In contrast, it caused a larger and more persistent decline in average

commercial office prices, reflecting the contraction in aggregate non-remote employment. In

the long run, model dynamics show that the negative effect on residential prices reverses,

while the decline in commercial values persists. Second, the shock generates substantial

spatial heterogeneity. The effect on residential prices is roughly balanced across regions that

experience gains and those that experience losses, whereas the impact on commercial space

is negative in nearly all regions. Moreover, residential and commercial price effects are highly

correlated across regions, producing “winner” locations, where housing values rise and office

markets experience only modest losses, and “loser” locations which face large declines in

1See Appendix Figure 6.
2I focus on the office sector, which is likely more exposed to the remote shock than other commercial real

estate classes (e.g., retail, industrial).

1



both markets. Third, the magnitude of these price effects depends crucially on differential

migration patterns between remote and non-remote workers as well as the pre-shock spatial

distribution of office capital. I consider two place-based policies, each of which targets one

of these factors, and find they lead to mixed welfare outcomes for the owners of residential

and commercial office space.

Building on existing static, spatial models of work-from-home (e.g., M. Davis et al., 2024;

Delventhal and Parkhomenko, 2024), I model the home as an asset with which agents can

transfer wealth across time. This introduces additional dynamic considerations into workers’

optimization problems, linked to the future trajectory of residential prices. Following the

remote shock, agents anticipate current and future price changes driven by differential mi-

gration patterns between remote and non-remote workers. These price changes affect agents’

current housing wealth, as well as the option value associated with relocating to a particular

region, leading to shifts in the spatial demand for housing.

On the production side, firms located in each labor market hire both non-remote workers

(from their own region) and remote workers (from all regions), as well as rent office space in a

local commercial office market. I show that the partial equilibrium response of office demand

to a shift toward remote work can be decomposed into two opposing channels. The first is

a positive complementarity effect, which arises from diminishing returns and the imperfect

substitutability between remote and non-remote inputs, so that additional remote workers

increase the marginal productivity of the non-remote input and thereby raise office demand.

The second is a negative substitution effect, as the reallocation of labor away from non-

remote work—an input complementary to office space—reduces office demand. Together,

these forces imply an overall ambiguous effect of the remote shock on office rents. However,

under a constant elasticity of substitution production framework, the relative magnitude

of these effects depends crucially on the elasticity of substitution between remote and non-

remote inputs. I estimate this elasticity using an instrumental variable strategy that exploits

pre-pandemic variation in regional potential for remote work, measured by the share of jobs

in each industry that could plausibly be done remotely, interacted with aggregate trends in

remote work to instrument for local adoption. The resulting point estimate indicates strong

substitutability between remote and non-remote work.

To quantify the price effects of the remote shock, I calibrate the full general equilib-

rium model to match key features of 234 U.S. metropolitan statistical areas (MSAs) prior

to the pandemic. Region-specific productivities and the remote work share in production

are calibrated to exactly match empirical mean wages and remote wage premiums in each

MSA. Given the high computational cost of estimating local amenities and origin-destination-

specific moving costs directly in a dynamic setting with hundreds of locations, I employ the
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dynamic exact-hat approach of Caliendo et al. (2019) and Kleinman et al. (2023) to solve

the model in time-differences. This approach allows me to simulate model dynamics without

knowledge of the underlying time-invariant fundamentals. The model is initialized using pre-

pandemic data: population and migration rates from the American Community Survey, the

residential price distribution from Zillow, and the commercial office price distribution from

Attom Data. I then simulate the economy’s dynamic response to an unexpected increase in

the attractiveness of remote work, calibrated to match the observed post-pandemic rise in

remote employment, and trace the resulting effects on residential and commercial real estate

prices across U.S. MSAs.

The model predicts a small, immediate decline of 0.9% in average residential prices due

to the remote shock, though this effect is temporary. In the long run, the sign reverses:

residential prices rise by 1.3% after 50 years. In contrast, the average price of commercial

office space falls persistently by 4.2%, reflecting the permanent loss of office workers. These

aggregate patterns mask substantial spatial heterogeneity. Across the 50 largest MSAs,

residential price effects of the remote shock range from −23% in San Francisco, CA to +27%

in Austin, TX, while commercial price effects range from −9% in San Francisco to −1% in

Orlando, FL. Across the full sample, 44% of MSAs experience an increase in residential prices,

while the remaining regions experience a decline. In contrast, the value of commercial office

space declines in 94% of regions, accounting for 99% of the pre-shock office stock. Further,

residential and commercial price effects are highly correlated, such that regions experiencing

large increases in residential demand tend to see only modest declines in office values, while

others face large declines in both markets.

To isolate the mechanisms driving the price effects of the remote shock, I conduct a

model decomposition based on seven counterfactual economies, each designed to capture the

contribution of a specific factor. The exercise reveals that differential migration patterns

between remote and non-remote workers and the initial (pre-shock) spatial distribution of

office space play central roles in determining the magnitude of the remote shock’s price

effects for residential and commercial space respectively. When remote and non-remote

workers migrate at the same rates, the residential price effect of the remote shock essentially

disappears, indicating that differential migration patterns amplify the residential price effect

of the remote shock. In contrast, the initial distribution of office space serves to dampen

commercial price effects, which are 68% larger in an economy with a uniformly distributed

office stock. Motivated by these findings, I evaluate two place-based policies that directly

target remote migration and the spatial distribution of office space. The first is a remote

work subsidy, financed by a labor tax on local residents, that incentivizes remote workers

to relocate to a given region. The second is an office-to-residential conversion policy, which
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allows owners of office buildings to convert part of their stock into housing at a fixed per-

unit cost. The remote work subsidy generates only modest price and welfare effects overall,

though some regions including Seattle and Dallas experience notable (>2%) welfare gains

for local workers. By contrast, the office conversion policy produces a 10% average decline

in residential prices and a 0.63% average increase in commercial prices. These shifts are

accompanied by a significant decline in average worker welfare (−7%) but an increase in the

average welfare of office owners (0.64%).

Finally, I validate the quantitative model predictions by providing new reduced form

estimates of the effect of remote work on commercial office prices. I employ a two-stage

least square framework, to isolate the impact of exposure to local remote employment from

other contemporaneous shifts in regional office demand. After controlling for observable

characteristics of transacted buildings, the estimates show that higher rates of remote work

lead to a statistically and economically significant decline in office prices. Moreover, the

magnitude of the estimated effect closely matches that implied by the model.

1.1 Related Literature

This work contributes to several strands of the literature. First, a growing body of work

explores the evolution of cities and regions in response to the increased prevalence of work-

from-home, often using urban-style models. These include M. Davis et al. (2024), Monte et

al. (2023), Delventhal et al. (2022), Howard et al. (2023), Gokan et al. (2022), Brueckner et al.

(2023), Richard (2024), Bond-Smith and McCann (2024), and Behrens et al. (2024). Gupta,

Mittal, and Van Nieuwerburgh (2022) study the impact of remote work on the commercial

office market using a partial equilibrium asset pricing framework, focusing on the effect in

New York City. In contrast, I emphasize the differential effects of the remote shock across

U.S. markets in general equilibrium. As in this paper, Yoo (2024) considers the welfare

effects of a subsidy for remote workers, finding small, positive effects when the subsidy is

financed by local income taxes. I build on this analysis by considering welfare effects across

U.S. MSAs, and study an additional policy response to the remote shock, office-to-residential

conversions.

A closely related paper is Delventhal and Parkhomenko (2024), which also develops a

spatial model of migration and remote work featuring many regions. However, their model

assumes a single price for local floorspace. My model instead allows for differential effects on

the demand for residential and commercial real estate, and, by incorporating forward-looking

behavior, enables analysis of the dynamic equilibrium response of each real estate type.3

3In Section 5.6, I demonstrate the quantitative relevance of the residential-commercial distinction.
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This paper also contributes to the literature which empirically documents the evolution

of real estate prices post-pandemic. Ramani and Bloom (2021), Gupta, Mittal, Peeters, et al.

(2022), Brueckner et al. (2023), and Liu and Su (2021) provide empirical evidence on the

shifts in residential demand within cities, documenting an increase in demand in the suburbs

relative to the urban core. Rosenthal et al. (2022) shows a similar pattern for commercial real

estate. A subset of these also consider the residential price effect across cities differentially

exposed to remote work (Liu and Su, 2021; Brueckner et al., 2023; as well as Mondragon

and Wieland, 2022). I complement this literature by providing, to my knowledge, the first

estimated effect of a city’s remote work share on the price of commercial office real estate.

Finally, this paper contributes to the dynamic spatial literature (e.g., Bilal and Rossi-

Hansberg, 2021; Desmet et al., 2018; Allen and Donaldson, 2020). Caliendo et al. (2019) de-

velop the dynamic hat algebra approach to solve dynamic spatial models without knowledge

of a set of economic fundamentals by conditioning on observed initial allocations. Kleinman

et al. (2023) extends the approach to include endogenous capital accumulation by immobile

landlords. I build on these by developing a two-stage discrete choice framework in which,

after observing the aggregate state of the economy, agents first choose their work mode and

then decide where to reside. This structure has the advantage of allowing the preference

shocks for work mode and residential location to be drawn independently from two distinct

distributions, rather than being represented by a single random variable.

In addition, while the solution methodology of Caliendo et al. (2019) and Kleinman et al.

(2023) relies on an assumption of hand-to-mouth workers, I allow the intertemporal transfer

of housing wealth by mobile workers.4 This distinction implies that a worker’s within-period

consumption depends not only on their initial location, but also the destination region where

they choose to migrate. To reflect this, I modify the timing of the worker’s problem relative

to these papers, such that consumption is determined by both their individual state (the

origin region) and their choice variables (work mode and destination), and calibrate the

model to match transitions across regions and work modes observed in the data.

The rest of this paper is organized as follows: Section 2 lays out the model, Section 3

analyzes the response of real estate demand to an increase in remote work, Section 4 de-

scribes the calibration, Section 5 presents the quantitative results, Section 6 characterizes the

empirical response of real estate prices to remote work, and Section 7 concludes. Additional

results are presented in the Appendix.

4Giannone et al. (2023) also allow workers to save, though their model features fewer locations (27),
making it feasible to solve the model in levels. I instead apply the dynamic exact-hat approach of Caliendo
et al. (2019) to a model with 234 locations and solve the model in time-differences.
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2 Model

The economy consists of L discrete regions. Time is discrete and indexed by t. As in Klein-

man et al. (2023), I assume the presence of two distinct types of households: (i) Workers

who are mobile, purchase housing, and supply labor for production; and (ii) immobile own-

ers of commercial real estate who invest in office development in response to local market

conditions. In each region, firms produce a homogenous consumption good (traded nation-

ally), as well as local supplies of new housing and office space. Throughout the paper, I use

r ∈ {R,N} to index work modes remote (R) and non-remote (N), and l, k ∈ {1, ...,L} to

index regions.

2.1 Workers

A unit measure of infinitely lived workers is distributed across L regions. Workers are ex

ante identical within each region. In each period t, workers receive idiosyncratic preference

shocks over work modes, denoted ζr,t for r ∈ {R,N}, and over residential locations, denoted

εl,t for l ∈ {1, . . . ,L}. While location-specific shocks are standard in dynamic discrete

choice models, the inclusion of preference shocks over remote status is intended to reflect

the substantial heterogeneity in working arrangement preferences (M. Davis et al., 2024).

As is standard in the literature, the preference shocks are independently drawn from type I

extreme value distributions: ζr,t ∼ Gumbel(0, νr), εl,t ∼ Gumbel(0, νl). The worker’s decision

problem unfolds in two stages: first, the worker chooses a work mode; then, conditional on

that choice, selects a new residential location.

At the beginning of each period, a worker observes their individual state—comprising

their current location and idiosyncratic preference shocks over work modes—as well as the

aggregate state of the economy. The worker first chooses a work mode. Specifically, a worker

residing in region l and experiencing work mode preference shocks ζt ≡ (ζR,t, ζN,t) chooses

r ∈ {R,N} to maximize expected utility:

vwl,t = max
r∈{R,N}

Eε

[
vwr,l,t

]
+ ζr,t + Zr,t, (1)

where vwr,l,t is the conditional value function after the choice of work mode r, and the expec-

tation is taken over the vector of location shocks εt ≡ (ε1,t, . . . , εL,t).
5 The term Zr,t captures

5In addition to fully remote work, hybrid working arrangements, in which a worker splits their time
between the home and office, has emerged as an important feature of the post-pandemic economy (Barrero
et al., 2021). However, as the focus of the quantitative exercise is on the differential effects of the remote
shock across (rather than within) U.S. MSAs—which are often geographically isolated from one another—I
instead emphasize the distinction between fully remote and fully in-person work.
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an additional, deterministic amenity value associated with work mode r, such as stigma or

flexibility, which is common across individuals, but may vary over time.

After choosing a work mode r, workers observe their idiosyncratic location preference

shocks εt and choose a new residential location k. Formally, they solve

vwr,l,t = max
k∈Γ(r,l)

c1−γ
t − 1

1− γ
+ βE[vwk,t+1] + εk,t +Xk −ml,k (2)

s.t. ct = (1− τk)wr,k,t + pl,th̄(1− δh)− pk,th̄+ Tk,r,l,t,

where Xk denotes the amenity value of location k, ml,k is a utility cost of relocating from

l to k, and γ ≥ 1 is the inverse elasticity of intertemporal substitution. The feasible set

Γ(r, l) ⊆ {1, ...,L} captures the set of locations a worker in l can move to when selecting

work mode r. This is motivated by the fact that, in the data, certain combinations of origin,

destination, and work mode are never observed.6 Consumption ct is determined by the

chosen work mode r, and destination k, as well as the worker’s origin l. It is composed of

after-tax wage income, net housing capital gains, and local government transfers. Extending

the approach of Caliendo et al. (2019) and Kleinman et al. (2023) who model workers as

hand-to-mouth, I allow workers to transfer wealth across periods via housing investment.

A worker relocating from l to k sells their existing housing stock net of deprecation,

h̄(1−δh), at price pl,t, and purchases h̄ units in k at price pk,t, where the depreciation rate δh

is used to capture the costs associated with homeownership (e.g., maintenance). As in Guren

et al. (2021), I assume that all workers purchase fixed h̄ units of housing.7 In addition, the

worker receives a wage income, wr,k, which depends on work mode and location. Wages are

taxed at rate τk based on the worker’s physical residence. Remote workers supply labor to a

national labor market, while non-remote workers supply labor only to firms in their physical

location k.8 Finally, workers receive local government transfer, Tk,r,l,t, which are allowed to

vary by work mode r, as well as the worker’s origin l and destination k.

Notice the worker’s problem in (1) - (2) depends on not only the current individual and

aggregate state of the economy, but also their expected future paths, making the agent’s

6The properties of the Gumbel distribution imply that, for every initial location l and work mode r,
the measure of agents relocating to a feasible region k is strictly positive. Thus, to be consistent with the
observed initial migration rates needed to initialize the dynamic hat algebra approach (Section 4.2), I restrict
the choice set to only those regions k with a positive number of movers in the data.

7Introducing an individual worker’s housing stock as an additional state variable would require data on
workers’ beginning-of-period holdings of housing, which is unavailable. Given this abstraction from the
intensive margin of housing choice, I assume flow utility depends only on consumption of the tradable good,
ct, and not on housing.

8The integration of the remote labor market across regions implies the equilibrium remote wage is the
same across regions: wR,l,t = wR,t for all l.
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decision a dynamic one.9 I discuss how agents form expectations concerning the aggregate

state of the economy in Section 2.7.

2.1.1 Population flows

The properties of the Gumbel distribution imply that, conditional on an individual worker’s

initial location l, the probability that the worker chooses work mode r (before the realization

of the work mode preference shocks ζ) is:10

µr,l,t =
exp

(
ν−1
r ṽwr,l,t

)
exp

(
ν−1
r ṽwN,l,t

)
+ exp

(
ν−1
r ṽwR,l,t

) , (3)

where,

ṽwr,l,t ≡ Eε

[
vwr,l,t

]
+ Zr,t.

By a law of large numbers, (3) also gives the share of workers who begin the period in region

l, and choose work mode r after realization of the work mode preference shocks. Likewise,

the share of workers who choose new residence k conditional on initial location l and work

mode r is

πk,r,l,t =
exp

(
ν−1
l
≈
vwk,r,l,t

)∑
k′∈Γ(r,l) exp

(
ν−1
l
≈
vwk′,r,l,t

) , (4)

where
≈
vwk,r,l,t ≡ uk,r,l,t + βE[vwk,t+1] +Xk −ml,k,

and uk,r,l,t denotes the flow utility value of consumption subject to the worker’s budget

constraint in (2).

Taken together, (3) and (4) can be used to construct the laws of motion for workers.

Using stars to denote the equilibrium residential population, one can write expressions for

the measure of non-remote N∗l,t and remote R∗l,t workers residing in region l:

N∗l,t =
L∑
k=1

µN,k,t · πl,N,k,t · L∗k,t−1, (5)

R∗l,t =
L∑
k=1

µR,k,t · πl,R,k,t · L∗k,t−1, (6)

where L∗k,t−1 = N∗k,t−1 +R∗k,t−1 is the residential population of region k in period t− 1.

9I derive expressions for the expectations in (1) and (2) in Appendix E.
10See Appendix E for derivations of the choice probabilities.
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2.2 Owners

Commercial office space is accumulated through investment by owners in response to local

market conditions. Since most commercial real estate in the U.S. is directly owned by the

firm that uses it as an input to production, I model each region as being populated by an

immobile, representative owner who invests exclusively in local office capital, rather than

interregional investors (e.g., real estate investment trusts), which constitute a small share

of private, commercial ownership (Ghent et al., 2019). These infinitely-lived owners solve a

standard consumption-savings problem, subject to a budget constraint and law of motion

for office capital.

The commercial office owner in region l chooses consumption and investment in new office

space to maximize the expected present discounted value of flow utility:

Et

∞∑
s=0

βs
(col,t+s)

1−γ − 1

1− γ
, (7)

where col,t denotes the owner’s consumption of the numeraire tradable good. The owner faces

a budget constraint equating rental income from the current stock of office space, rl,tbl,t, to

consumption and investment expenditures:

col,t + ql,txl,t = rl,tbl,t, (8)

where xl,t denotes investment in new office space at per-unit price ql,t.
11 The law of motion

for office capital is:

bl,t+1 = xl,t + (1− δb)bl,t, (9)

where δb is the depreciation rate of office space. Office capital is region-specific and geograph-

ically immobile. To reflect the relatively long construction times for commercial (as opposed

to residential) real estate, I model a one-period time-to-build lag for new office space.12

The first-order condition from the owner’s problem yields the following asset pricing

equation for office real estate:

ql,t = Et
[
Ml,t+1

(
rl,t+1 + (1− δb)ql,t+1

)]
, (10)

where Ml,t+1 is the stochastic discount factor. Iterating forward on equation (10), we ob-

11In principle, the owner could disinvest, resulting in negative investment (xl,t ≤ 0). However, market
clearing in new office construction ensures that xl,t > 0 in equilibrium.

12In Appendix C, I use the owner’s first-order conditions to derive a recursive expression for the optimal
savings rate sl,t.
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tain:13

ql,t = Et

[
∞∑
j=1

(
j∏

n=1

Ml,t+n

)
(1− δb)j−1rl,t+j

]
. (11)

That is, the price of a unit of office space in period t reflects the expected present discounted

value of the stream of future rental income it generates, adjusted for depreciation. In Section

5, I examine how the remote work shock affects the regional distribution of office prices, ql,t,

in order to quantify its impact on commercial office real estate values.

2.3 Production

Regional firms operate in three sectors: (i) production of a tradable consumption good, (ii)

construction of residential real estate, and (iii) construction of commercial office space. All

sectors are perfectly competitive, and firms take prices as given. The consumption good

is traded costlessly across regions, while newly constructed residential and commercial real

estate are sold only in the local market.

Firms in the tradable goods sector produce a homogenous output Y C
l,t by combining

remote (Y R
l,t ) and non-remote (Y N

l,t ) inputs using a region-specific production technology:

Y C
l,t = Fl

(
Y R
l,t , Y

N
l,t

)
, (12)

where Fl(·) is concave, with ∂Y C
l,t/∂Y

Z
l,t > 0, ∂2Y C

l,t/∂(Y Z
l,t )

2 < 0 for Z ∈ {R,N}, and the

cross-partial is non-negative, ∂2Y C
l,t/∂Y

N
l,t ∂Y

R
l,t ≥ 0.14 The non-remote input Y N

l,t is produced

using labor Nl,t and office buildings Bl,t:

Y N
l,t = FN

l (Nl,t, Bl,t) ,

with ∂Y N
l,t /∂Zl,t > 0, ∂2Y N

l,t /∂Z
2
l,t < 0 for Z ∈ {N,B}, and ∂2Y N

l,t /∂Nl,t∂Bl,t > 0. The remote

input Y R
l,t is produced using only remote labor Rl,t:

Y R
l,t = FR

l (Rl,t) ,

with ∂Y R
l,t/∂Rl,t > 0, and ∂2Y R

l,t/∂R
2
l,t < 0.15 Note that the measure of remote labor employed

in region l (Rl,t) may differ from that of remote labor living in l (R∗l,t) since remote workers

13Equation (11) requires a (no-bubble) condition, limn→∞Et[(
∏n
m=1Mt+m) (1− δb)nqt+n] = 0.

14The inputs Y Nl,t and Y Rl,t are q-complements if ∂2Y Cl,t/∂Y
N
l,t ∂Y

R
l,t > 0. This will be satisfied by the

functional form used in the quantitative analysis.
15For simplicity, I do not model (non-office) capital explicitly. Alternatively, one could assume fixed stocks

of remote and non-remote capital embedded in the production functions FRl (·) and FNl (·) respectively.
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can be hired from any region. In contrast, non-remote labor employed in l must equal

non-remote labor residing in l: Nl,t = N∗l,t.

Taking the tradable good as the numeraire, firms maximize profits subject to their pro-

duction technologies. The resulting first-order conditions for input demand are:

wN,l,t =
∂Y C

l,t

∂Y N
l,t

·
∂Y N

l,t

∂Nl,t

, (13)

rl,t =
∂Y C

l,t

∂Y N
l,t

·
∂Y N

l,t

∂Bl,t

, (14)

wR,t =
∂Y C

l,t

∂Y R
l,t

·
∂Y R

l,t

∂Rl,t

. (15)

Construction firms produce new local residential housing Y H
l,t and commercial office space

Y B
l,t using materials (i.e., the tradable good) MH

l,t , M
B
l,t, and land or permits PH

l,t , P
B
l,t,

Y Z
l,t = AZl (MZ

l,t)
ρZl (PZ

l,t)
1−ρZl , Z ∈ {H,B}.

Notice the material share ρZl , which governs the price elasticity of supply, is allowed to

vary spatially, consistent with micro-level evidence on geographic heterogeneity in floorspace

supply (Saiz, 2010; Baum-Snow and Han, 2024). Letting rHl,t and rBl,t denote the price paid

for residential and commercial office permits, profit maximization implies,

rHl,t =
∂Y H

l,t

∂PH
l,t

· pl,t, (16)

rBl,t =
∂Y B

l,t

∂PB
l,t

· ql,t, (17)

where pl,t and ql,t are the prices of residential and commercial office space, respectively.

Following Favilukis et al. (2017), I assume that a government supplies permits at a fixed

rate, and uses the proceeds rHl,tP̄
H
l and rBl,tP̄

B
l to finance wasteful government spending. This

ensures that construction firms receive zero profits in equilibrium.

2.4 Government

In each region, a local government taxes the labor income of residents and rebates the

proceeds to them as lump-sum transfers. This mechanism enables redistribution across

worker groups (remote and non-remote). The budget constraint of region l’s government is

11



given by:

τl,t
(
wN,l,tN

∗
l,t + wR,tR

∗
l,t

)
=

L∑
k=1

∑
r∈{R,N}

(Tl,r,k,t · µr,k,t · πl,r,k,t · Lk,t−1) , (18)

where the left-hand side denotes labor tax revenue from both non-remote and remote workers,

and the right-hand side is the sum of rebates to workers residing in l. The term µr,k,t ·πl,r,k,t ·
Lk,t−1 denotes the measure of workers in region k who choose work mode r and new residence

l, and who receive a rebate of Tl,r,k,t.

2.5 Market Clearing

There are 6L + 2 markets that must clear in equilibrium. They are: (i) L residential real

estate markets; (ii) L markets for newly constructed commercial office space; (iii) L markets

for existing commercial office space; (iv) L markets for residential construction permits; (v)

L markets for commercial office construction permits; (vi) L markets for non-remote labor;

(vii) the (national) market for remote labor; and (viii) the (national) market for the tradable

good.

In each region l, residential market clearing requires that housing demand equals total

housing supply, which includes both newly constructed and existing residential units:

L∗l,th̄ = L∗l,t−1(1− δh)h̄+ Y H
l,t , ∀l. (19)

In the market for newly constructed commercial office space, investment by owners equals

office space construction:

xl,t = Y B
l,t , ∀l. (20)

The demand for office space by firms in the tradable goods sector equals the supply of existing

office space provided by owners:

Bl,t = bl,t, ∀l. (21)

The market for home and office construction permits clears when demand equals the

fixed regional supply set by the government:

PH
l,t = P̄H

l , ∀l, (22)

PB
l,t = P̄B

l , ∀l. (23)

12



Labor market clearing requires that demand equals supply for both non-remote and

remote labor. For non-remote labor, this requires that the local demand for non-remote

workers equals the supply:

Nl,t = N∗l,t, ∀l. (24)

Remote workers supply labor in an integrated national market, and market clearing for

remote labor requires that the aggregate demand by firms equals the aggregate supply of

remote labor across regions:

L∑
l=1

Rl,t =
L∑
l=1

R∗l,t. (25)

By Walras’s Law, if all markets for goods and labor except the final tradable good

clear—that is, if equations (19)-(25) hold—then the market for the tradable good also clears.

2.6 Equilibrium

The endogenous state of the economy at time t is given by the distribution of labor across re-

gions and work modes, as well as the distribution of office space, St = {(N∗l,t, R∗l,t, Bl,t)}Ll=1.16

I follow Caliendo et al. (2019) and distinguish between time-varying and constant funda-

mentals of the economy. Specifically, let Θt ≡ (ZN,t, ZR,t) denote the time-varying amenities

associated with non-remote and remote work. The remaining time-invariant fundamentals

(which I refer to as parameters) are: moving costs, {ml,k}L,Ll=1,k=1; tax rates, {τl}Ll=1; pro-

ductivities in the residential construction sector, {AHl }Ll=1; productivities in the commercial

office construction sector, {ABl }Ll=1; residential permits, {P̄H
l }Ll=1; commercial office permits,

{P̄B
l }Ll=1; the material share in residential construction, {ρHl }Ll=1; the material share in com-

mercial office construction, {ρBl }Ll=1; the housing parameter, h̄; housing deprecation, δh; office

space deprecation, δb; the discount factor, β; regional amenities, {Xl}Ll=1; the dispersion of

location shocks, νl; and the dispersion of work mode shocks, νr; as well as the functions

characterizing production in the tradable sector {Fl(·), FN
l (·), FR

l (·)}Ll=1. I collect these pa-

rameters in a vector Θ̄. I now define a sequential equilibrium.

Definition 1: Given an initial allocation S0, a path for time-varying fundamentals

{Θt}∞t=0, and parameters Θ̄, a sequential equilibrium is a time path for prices {(wN,l,t, wR,t,
rl,t, pl,t, ql,t, r

H
l,t, r

B
l,t)}

L,∞
l=1,t=0 worker and owner value functions {vwl,t}

L,∞
l=1,t=0, and {vol,t(·)}

L,∞
l=1,t=0,

conditional choice probabilities associated with each work mode {(µN,l,t, µR,l,t)}L,∞l=1,t=0, and

16Recall Nl,t = N∗l,t, while market clearing in the integrated market for remote labor implies a unique

distribution {Rl,t}Ll=1 given aggregate remote labor supply
∑
lR
∗
l,t. Thus, information on the distribution of

residential populations and office buildings is sufficient to characterize the aggregate state of the economy.
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location {(πk,N,l,t, πk,R,l,t)}L,L,∞k=1,l=1,t=0, and savings rates {sl,t}L,∞l=1,t=0 which solve the worker’s

problem (1) - (2), the owner’s problem (7), satisfy firms’ optimality conditions (13) - (17),

the government budget constraint (18), the laws of motion for labor (5) - (6), and market

clearing conditions (19) - (25).

Finally, I define a stationary equilibrium, for which all aggregates are constant. I use

“ss” to denote a steady state value.

Definition 2: A stationary equilibrium is a sequential equilibrium for which all fun-

damentals Θss, prices {(wN,l,ss, wR,ss, rl,ss, pl,ss, ql,ss, rHl,ss, rBl,ss)}Ll=1, value functions {vwl,ss}Ll=1

and {vol,ss(·)}Ll=1, choice probabilities {(µN,l,ss, µR,l,ss)}Ll=1 and {(πk,N,l,ss, πk,R,l,ss)}L,Lk=1,l=1, and

savings rates {sl,ss}Ll=1 are constant over time.

2.7 Remote Shock

In period t = t∗ > 0, the economy is hit by a probability zero (MIT) shock that permanently

increases the remote amenity by ZR = ZR,t∗ − ZR,t∗−1 > 0. Agents learn about the shock

(as well as the new future path for aggregate variables) at the start of period t = t∗ − 1.17

The economy may or may not have been in steady state before the shock, but it begins

transitioning toward a new steady state immediately after agents learn of the shock.

I model the remote shock as a preference shock, rather than a technology shock (as in

M. Davis et al., 2024). I adopt this interpretation for two reasons. First, survey evidence

indicates that workers are willing to accept meaningful pay cuts in exchange for the option to

work remotely.18 Importantly, Chen et al. (2023) document a post-pandemic shift in prefer-

ences toward remote work, with the largest changes occurring among those who experienced

the greatest increases in remote work during the pandemic. This pattern suggests that pos-

itive experiences with remote work under pandemic-induced stay-at-home orders generated

a lasting shift in worker preferences.19 Second, because my object of analysis is the price

of real estate, introducing a technology shock would confound the interpretation of the re-

sults. In particular, a remote-labor-augmenting technology shock would affect commercial

real estate values both through the reallocation of labor toward remote work and through

a direct productivity boost to the non-remote input via complementarity. My focus is on

the former channel—the labor reallocation effect—and for this reason, I adopt a preference

shock framework.

17The one-period delay between when agents learn about the shock and when preferences actually shift is
introduced for consistency with the dynamic exact-hat solution methodology (see Section 4.2).

18Barrero et al. (2021) report that workers are, on average, willing to accept a 7% pay reduction in exchange
for the ability to work from home two to three days per week.

19Bagga et al. (2025) summarize arguments in favor of a preference shock, rather than a technology shock.
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3 Remote Work and Real Estate Demand

What is the effect of the remote shock on the demand for residential and commercial office real

estate? In this section, I conduct a partial equilibrium analysis to study how an exogenous

increase in the attractiveness of remote work affects demand in both real estate markets.

I begin with the implications for commercial office space (Section 3.1) and then analyze

residential housing demand (Section 3.2). All proofs are included in Appendix B.

3.1 Commercial Office Space

In classic models of urban economics (e.g., Rosen, 1979; Roback, 1982), workers sort across

regions in response to differences in housing costs and wages, equalizing utility across space.

In contrast, office buildings are fixed in place and depreciate slowly, making them vulner-

able to becoming stranded assets in the wake of a shift toward remote work. Here, I use

the production framework introduced previously to analyze how office rents respond to an

exogenous increase in the supply of remote labor. To simplify the analysis, I focus on the

demand response within a single region. I show that the effect on office rents is ambigu-

ous, depending on the degree of substitutability between remote and non-remote inputs in

production.

Suppose the stock of office space is fixed at B̄, and the total supply of labor (remote and

non-remote) is normalized to L̄ = 1. Within this setting, consider the effect on the office

rental rate r—determined by the marginal product of office space as in equation (14)—of

an exogenous increase in the relative supply of remote workers (e.g., due to health concerns

that increase the attractiveness of remote work). That is, how does r change in response

to a marginal increase in R?20 The following proposition decomposes the total effect into a

positive and a negative component.

Proposition 1. Effect of remote work on office rents: The change in office rents

resulting from a marginal increase in remote labor R is

∂r

∂R
=

[
∂2Y C

∂(Y N)2
· ∂Y

N

∂N
· ∂N
∂R

+
∂2Y C

∂Y N∂Y R
· ∂Y

R

∂R

]
∂Y N

∂B︸ ︷︷ ︸
complementarity effect (>0)

+
∂Y C

∂Y N
· ∂

2Y N

∂B∂N
· ∂N
∂R︸ ︷︷ ︸

substitution effect (<0)

. (26)

The first term, which captures the complementarity effect of labor reallocation, is positive.

A marginal increase in remote labor reduces the number of non-remote workers (∂N/∂R <

20In the special case of a single region with a fixed total labor supply, an increase in remote labor must be
offset one-for-one by a reduction in non-remote labor: dN/dR = −1. In the full general equilibrium model
with endogenous migration introduced in Section 2, this relationship no longer holds locally.
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0), which lowers Y N (∂Y N/∂N > 0), and, due to diminishing returns (∂2Y C/∂(Y N)2 <

0), raises the marginal product of the non-remote input. Likewise, the increase in remote

labor output (∂Y R/∂R > 0) further increases the marginal product of the non-remote input

(∂2Y C/∂Y N∂Y R ≥ 0). Conversely, the second term, which captures the substitution effect of

labor reallocation, is negative. Fewer non-remote workers (∂N/∂R < 0) reduces the positive

contribution of labor to the marginal product of office space in production of the non-remote

input (∂2Y N/∂B∂N > 0), scaled by the non-remote input’s contribution to total output

(∂Y C/∂Y N > 0).

Thus, the overall sign of ∂r/∂R is ambiguous, as it depends on whether the increase in

marginal productivity from complementarity outweighs the reduction due to input substi-

tution away from non-remote production. This ambiguity holds under a general production

process, and suggests that, in the short run when the stock of office space is fixed and labor

is immobile, a decline in the demand for office space is not a necessary consequence of the

remote work shock.

To further characterize the determinants of remote work’s effect on office rents in (26),

I adopt the functional form for production used in the quantitative analysis. Specifically,

suppose output is produced using a constant elasticity of substitution (CES) aggregate of

remote and non-remote inputs:21

Y C = AC
[
α
(
Y R
)σ−1

σ + (1− α)
(
Y N
)σ−1

σ

] σ
σ−1

, (27)

where

Y N = NηB1−η,

Y R = φR,

with φ ≤ 1 denoting the relative productivity of remote (vs. non-remote) work. This

functional form is motivated by the observation that most regions utilized both remote and

non-remote inputs in strictly positive quantities prior to the pandemic, suggesting some

complementarity between the two (σ <∞).22

Under the functional form in (27), the sign of ∂r/∂R depends on whether the initial share

21This specification is similar to the production functions employed by M. Davis et al. (2024) and Delven-
thal and Parkhomenko (2024) in their analyses of work-from-home. In Appendix M.4, I consider a model
extension which includes agglomeration externalities in production.

22The joint use of remote and non-remote inputs may reflect task specialization, where certain tasks are
better suited to remote work (e.g., those requiring sustained concentration) and others to in-person work
(e.g., those requiring team coordination). Alternatively, firms may commit ex ante to a particular mix of
remote and non-remote inputs, with relative prices adjusting ex post, as in a putty-clay model of investment.
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of workers employed remotely is above a threshold value.

Lemma 1. The change in office rents from a marginal increase in remote work is negative

if and only if remote labor is not too low,

∂r

∂R
< 0⇐⇒ R ≥ R̃, (28)

for some 0 < R̃ < L̄.

Lemma 1 highlights the non-monotonic effect of remote work on office rents. Intuitively,

when the economy starts with a very low stock of remote workers, reallocating labor toward

remote work significantly raises the marginal product of the non-remote composite via the

complementarity effect in Proposition 1, increasing the value of office space. Conversely, once

remote labor passes a threshold, the substitution effect dominates, and subsequent increases

in remote work reduce office rents due to the lower supply of non-remote workers. Crucially,

the relative strength of these opposing channels depends on the degree of substitutability

between remote and non-remote inputs, as formalized in the following proposition.

Proposition 2. Remote substitutability and office rents: The range of initial values

of remote labor R ∈ (R̃, L̄) for which a marginal increase in remote work reduces office rents

(i.e., satisfies (28)) is increasing in the elasticity of substitution σ, if the following conditions

hold: (i) the elasticity of substitution is greater than one; and (ii) the stock of office space is

not too low that the complementary effect always dominates the substitution effect.23 In this

case, we have
∂R̃

∂σ
< 0.

Proposition 2 shows that, when the stock of office space is sufficiently large and remote

and non-remote labor are imperfect substitutes (i.e., the elasticity of substitution satisfies

σ ≥ 1), greater substitutability increases the range of pre-shock equilibrium allocations that

are associated with declines in office space demand following a shift toward remote work.

Accordingly, the elasticity parameter σ plays a central role in determining how office prices

respond to the remote shock. In Section 4.1.1, I estimate this key parameter. The results

support the assumption of imperfect substitutability, with a point estimate σ̂ > 1. I then use

this estimate to discipline the quantitative model’s predictions. Furthermore, in Section 5.3,

I examine the quantitative implications of complementarity between remote and non-remote

inputs.

23A sufficient condition for Proposition 2 is B ≥ exp(−σ/(1 − η))(1 − R̃)−η/(1−η). This condition holds
for all regions in the initial period of the quantitative analysis.
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3.2 Residential Real Estate

Next, I analyze the effect of remote work on residential housing prices. In contrast to com-

mercial office demand, which is shaped by firms’ input choices, residential housing demand

is driven by migration and the resulting equilibrium distribution of the population across

space.24 To study this, I introduce a stylized two-region model.

Consider an economy with workers distributed across two regions: a “home” region (h)

and a “foreign” region (f). For simplicity, I assume that the home region is sufficiently small

relative to the foreign region that changes in market conditions at home do not affect prices

in the foreign region. Further, I treat wages as exogenous and focus solely on the residential

housing market. Under these assumptions, the analysis centers on how an increase in remote

work influences equilibrium housing demand in the home region.

I begin with a static setting in which agents make one-time, permanent decisions about

where to live and whether to engage in remote work. In this environment, an increase in

housing demand in the home region arises if it successfully attracts the new remote workers.

This relationship is formalized in the following proposition.

Proposition 3. Residential demand in a static model: Suppose the continuation value

in the worker’s problem (2) is constant, E[vwl,t+1] = v̄, so that the worker’s problem becomes

static. Given an initial distribution of agents across regions, (L∗h, L
∗
f ), and a fixed residential

price p̄h, the effect of a marginal increase in the remote amenity, ZR, on the demand for

housing in the home region, D(ph;ZR), is:

∂D(ph;ZR)

∂ZR

∣∣∣∣
ph=p̄h

=
∑

k∈{h,f}

(
dµR,k
dZR︸ ︷︷ ︸

Change in region k share

choosing remote (>0)

× (πh,R,k − πh,N,k)︸ ︷︷ ︸
Difference in migration rate

between remote and non-remote

)
h̄L∗k. (29)

If remote and non-remote workers migrate at the same rate, πh,R,k = πh,N,k, the demand

effect of the remote shock is zero. If remote and non-remote workers migrate at different

rates, πh,R,k 6= πh,N,k, and consumption associated with non-remote work in the home region

is sufficiently small, then the home region sees an increase in residential demand following

the remote shock.

Proposition 3 highlights the central mechanism underlying the effect of the remote shock

24While the rise of remote work may have increased overall housing demand by encouraging workers to
seek larger homes (e.g., to accommodate a home office) as argued by Mondragon and Wieland (2022), this
paper focuses on relative changes in real estate prices across regions. The model emphasizes the extensive
margin of housing demand (i.e., the number of agents who choose to locate in a region), rather than the
intensive margin (i.e., how much floorspace each agent demands), under the assumption that the intensive
response is similar across regions.
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on residential housing prices: differential migration rates between remote and non-remote

workers. In particular, if remote workers are more likely to relocate to the home region,

the remote shock leads to increased housing demand there. Empirically, I provide support

for this mechanism in Appendix J, where I show that, conditional on observables, remote

workers exhibit higher migration rates than their non-remote counterparts.

The sign of the residential demand effect in (29) hinges on the relative attractiveness of

the home region to remote versus non-remote workers. This attractiveness, in turn, reflects

differences in utility across worker types, shaped by spatial variation in residential prices.

In Section 5, I quantitatively assess the relative contribution of the initial residential price

distribution in shaping the price effect of the remote shock.

While the static setting helps clarify the link between migration and housing demand,

it abstracts from a key element emphasized in the macro-housing literature: the asset value

of housing. In reality, agents use their homes to transfer wealth over time and factor in

expectations about future residential prices when making location decisions. To incorporate

these dynamic considerations, I extend the analysis to a two-period model in which agents’

migration choices in the first period reflect anticipated changes in residential prices caused

by the remote shock. All other features of the economy remain as in the static framework

of Proposition 3.

Proposition 4. Residential demand in a dynamic model: Suppose the continuation

value in the worker’s problem (2) is constant in period two, E[vwl,2] = v̄, such that the worker’s

problem becomes a dynamic two-period problem. Given an initial distribution of agents across

regions, (L∗h,0, L
∗
f,0) and a fixed period-one residential price, p̄h,1, the effect of a permanent,

marginal increase in the remote amenity on the period-one demand for housing in the home

region, D(ph,1, ph,2;ZR), is

∂D(ph,1, ph,2;ZR)

∂ZR

∣∣∣∣
ph,1=p̄h,1

=
∑

k∈{h,f}

(
dµR,k,1
dZR

(πh,R,k,1 − πh,N,k,1)︸ ︷︷ ︸
Direct effect

+ Ωk︸︷︷︸
Dynamic

considerations

)
h̄L∗k,0. (30)

The term Ωk is a linear transformation of the difference in weighted marginal utility benefits

in period two between agents who choose home vs. foreign in period one, and with the weights

given by the joint probability (µr′,l,2 × πl′,r′,l,2) of choosing remote status r′ and residential
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location l′ in period two, given period one residence l:

Ωk = ak + bk
∑

r′∈{R,N}

∑
l′∈{h,f}

(
µr′,h,2 × πl′,r′,h,2

du

dc

∣∣∣∣
c=c(l′,r′,h;ph,2)

∂c(l′, r′, h; ph,2)

∂ph,2︸ ︷︷ ︸
Home benefits

(31)

− µr′,f,2 × πl′,r′,f,2
du

dc

∣∣∣∣
c=c(l′,r′,f ;ph,2)

∂c(l′, r′, f ; ph,2)

∂ph,2︸ ︷︷ ︸
Foreign benefits

)
dph,2
dZR

,

where c(l′, r′, l; ph,2) denotes the consumption of an agent who migrates from location l to l′

and works in mode r′, given price ph,2.

Due to agents’ forward-looking behavior, current residential demand depends on the path

of future residential prices. Equation (31) captures the trade-off that agents face when de-

ciding where to live: they weigh the home benefits—the marginal utility gains from future

consumption if residing in the home region today—against the foreign benefits, which cap-

ture the analogous gains from living in the foreign region. These benefits depend on how

the remote shock alters future consumption opportunities through changes in prices and

migration flows. When prices in the home region are expected to rise, the value of residing

in the home region increases relative to the foreign region due to the option value of selling

at a higher price tomorrow. This creates a feedback loop in which expectations of future

appreciation raise current demand, reinforcing price momentum, consistent with empirical

findings (e.g., Piazzesi and Schneider, 2009; Armona et al., 2019). Crucially, this dynamic

behavior implies that the immediate impact of the remote work shock on real estate prices

depends on the degree to which it shifts the economy off its pre-shock dynamic path, a

feature missing from static models of real estate demand.

4 Calibration

This section lays out the calibration strategy for the model introduced in Section 2. The

model is calibrated to match features of the pre-pandemic U.S. economy, where each region

corresponds to a Metropolitan Statistical Area (MSA). It includes L = 234 MSAs.25 One

period in the model corresponds to one year. I initialize the economy in period t = 0,

corresponding to the U.S. economy in 2019, and assume that the remote preference shock

occurs in 2021 (t∗ = 2).

25Appendix K discusses the selection of the MSA sample.
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Table 1: Parameter Values

Parameter Value Description Source/Target

Externally Fixed Parameters
τl Varies Tax rates NBER Taxsim
φ 1 Remote Productivity Fixed
σ 4.392 EOS between Remote and

Non-remote
Estimated

P̄Hl 1 Housing Permits Normalization
P̄Bl 1 Office Permits Normalization
ρZl Varies Material Share in Construction Saiz (2010) estimates
h̄ 1 Housing Parameter Normalization
δb 0.024 Office Depreciation BEA Fixed Assets
β 0.9615 Discount Factor Fixed
νl 2.02 Dispersion of Location Shocks Caliendo et al. (2019)
νr 0.0634 Dispersion of Work Mode Shocks M. Davis et al. (2024)
γ 2 Inverse Elasticity of Intertemporal

Substitution
Fixed

Internally Calibrated Parameters
ACl Varies Tradable Sector TFP Average wage (ACS)
AHl Varies Housing Sector TFP Home prices (Zillow)
αl Varies Remote Share in Production Remote wage premium (ACS)
ηl Varies Labor’s Share in Non-remote

Input
Income shares in Valentinyi and

Herrendorf (2008)
δh 0.058 Housing Depreciation Housing Expenditure share (BLS)

A subset of parameters is fixed using standard values, estimates from the literature,

or reduced-form estimates (Section 4.1). To avoid calibrating region-specific amenities and

migration costs, I employ a dynamic exact-hat approach (Section 4.2). The remaining pa-

rameters are calibrated to match key moments of the pre-pandemic economy (Section 4.3).

Table 1 summarizes parameter values used in the quantitative analysis.

4.1 Externally Fixed Parameters

I set the discount factor β = 0.9615, corresponding to an annual discount rate of 4%. As

is standard in the macro literature, I assume utility has the constant relative risk aversion

form, with inverse elasticity of intertemporal substitution γ = 2. The housing parameter

is normalized to h̄ = 1, such that pl,t denotes the price of a typical house in MSA l. For

the parameters controlling the dispersion of preference shocks, I borrow the location shock

estimate from Caliendo et al. (2019), νl = 2.02, and the work mode shock estimate from

M. Davis et al. (2024), νr = 0.0634. I take the depreciation rate for commercial office real
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estate from the 2018 Bureau of Economic Analysis (BEA) fixed assets tables, δb = 0.024.26

For labor taxes τl, I use 2018 marginal tax rates from the National Bureau of Economic

Research (NBER) Taxsim tables (Feenberg & Coutts, 1993), based on a household with a

nominal income of $75,000.27 In the benchmark calibration, I assume that labor tax rebates

are distributed uniformly to all residents of a region, such that Tl,r,k,t = Tl,t for all l, r, k.

Empirical evidence on the relative productivity of remote work is mixed. For example,

Bloom et al. (2015) find productivity gains associated with working remotely, while Gibbs

et al. (2023) report productivity losses. To avoid taking a stand, I set the productivity

of remote work φ = 1, such that remote workers are as productive as their non-remote

counterparts.

I choose the material shares in residential construction ρHl to match each MSA’s housing

supply elasticity as estimated in Baum-Snow and Han (2024).28 Due to limited empirical

evidence on the elasticity of commercial real estate supply across geographies, I adopt the

same values for the material share of office construction, ρBl , as those used for housing,

ρHl . This choice reflects the fact that many local factors (natural or regulatory) affect both

sectors in similar ways. Permits in the housing and office construction sectors are normalized

to P̄H
l = P̄B

l = 1 for all l.

4.1.1 Estimating the Substitutability of Remote Work

Section 3 demonstrated that the elasticity of substitution between remote and non-remote

inputs, σ, plays a central role in determining the impact of remote work on office demand.

Here I provide a reduced-form estimate of σ by exploiting variation in pre-pandemic exposure

to remote work.

Notice that the profit maximization problem of a firm facing the production function in

(27) implies the following relationship between the remote wage and the firm’s demand for

remote labor,

ln (wR) = Āl +
1

σ
· ln
(
Y C
l

Rl

)
,

where Āl ≡ ln((ACl )
σ−1
σ αl) depends on fixed model parameters characterizing the production

26The depreciation rate is computed as the ratio of the 2018 depreciation for category “Office” relative to
its stock.

27I use marginal tax rates (variable mtr wage) from the nominal table (see link). For MSAs that cross
state lines, I use the tax rate associated with the state where the largest principal city is located.

28Following the recommendation of Baum-Snow and Han (2024), I use the estimates from the FMM-IV
model (region gamma111b space FMM ).
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process in region l. This motivates the following estimating equation:

ln (wR,l,t) = µl + σ∗ ln

(
Y C
l,t

Rl,t

)
+ κt + εl,t, (32)

where µl is a region fixed effect and σ = 1/σ∗.29 Additionally, I include year fixed effects,

κt, to control for aggregate trends in remote work.30

I use data on remote wages and regional GDP to estimate σ. American Community

Survey (ACS) data for the period 2015 - 2023 is used to compute the average remote wage

among employed, civilian individuals, by region and year, wR,l,t, as well as the number of

remote workers Rl,t (Ruggles et al., 2024).31 Data on regional GDP Y C
l,t is collected from the

BEA GDP by Metropolitan Area tables.32

Notice that unobserved changes to the productivity of remote work (e.g., the introduction

of Zoom), which are correlated with the demand for remote labor, can lead to biased OLS

estimates of the demand parameter σ∗ in (32). To address this, I implement a two-stage least

squares approach that exploits the pandemic-driven shift in the aggregate supply of remote

workers. Specifically, I construct an instrument by interacting local pre-pandemic exposure

to remote work with the national, time-varying share of workers employed remotely. For

the former, I take the industry-level measure of exposure to remote work from Dingel and

Neiman (2020), who assign to each industry the share of (pre-pandemic) jobs which could

be done remotely (i.e., teleworkable jobs). I aggregate this measure to the MSA level, by

combining it with the 2014 MSA-level share of total employment in each industry from the

U.S. Census Business Patterns,

Expl =
∑
j

sj,l,2014 · Expj,

where sj,l,2014 is the 2014 employment share of industry j in MSA l, and Expj is the share

of teleworkable jobs in industry j. I then interact the log of the exposure measure with the

29While the model features a single market for remote labor, remote wages in the data differ by region
due to differences in local industry makeup: remote jobs tend to be high paying and concentrated in certain
industries (Barrero et al., 2023). Thus, I allow the remote wage to vary by region in the estimating equation
(32).

30The remote share of the labor force grew at an average annual rate of approximately 3% from 2000 to
2019 (see Appendix A).

31As is standard in the work-from-home literature, remote workers are defined as those whose reported
means of transportation to work in the ACS is “Worked at home”.

32Y Cl,t denotes region l GDP less the contribution from residential and commercial office construction.

Thus, I compute Y Cl,t as the total real GDP of MSA l minus the contribution from the construction industry
in l.
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Table 2: Estimates of the Elasticity of Substitution, σ

(1) (2)

First stage
Log Exposurel × Remotet −9.996∗∗∗ −10.056∗∗∗

(1.053) (1.048)
Second stage
Elasticity of Substitution, σ 4.392∗∗ 4.423∗∗

(2.169) (2.184)

MSA FE Yes Yes
Year FE Yes Yes
Industry Control No Yes
Observations 1962 1962

Note: Standard errors are clustered at the MSA level, and are computed for σ using the delta
method.

ACS’s annual share of the U.S. workforce working remotely:

Wl,t = ln (Expl) · Remt. (33)

The exogeneity of the instrument Wl,t relies on the local pre-pandemic shares of teleworkable

jobs being independent of other contemporaneous shocks to the regional demand for remote

workers.

Column 1 of Table 2 reports the baseline estimation results. The first-stage results in-

dicate that the instrument strongly predicts the ratio Y C
l,t/Rl,t, with a first-stage F-statistic

of 90.21. The second-stage results yield an estimated elasticity of substitution of σ̂ = 4.392.

This estimate aligns with the values used in M. Davis et al. (2024) (σ = 4.545) and Del-

venthal and Parkhomenko (2024) (σ ∈ [3.033, 4.355]). I take this estimate as my preferred

benchmark.

As noted by Barrero et al. (2023), remote work is concentrated in certain industries, which

raises the possibility that industry-specific trends may confound the identification strategy.

To address this, column 2 introduces a Bartik-style control that accounts for differential

regional exposure to aggregate industry dynamics. Specifically, it uses the weighted average

of national, industry-level employment growth, where the weights are based on region l’s

2014 employment shares across industries. The results show that the estimated elasticity σ̂

remains robust to the inclusion of this control.
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4.2 Dynamic Exact-Hat Algebra

I adopt the dynamic exact-hat algebra methodology of Caliendo et al. (2019) and Kleinman

et al. (2023) to solve the model in time differences rather than in levels. This approach allows

me to simulate transition dynamics without estimating certain region-specific parameters.33

The methodology requires data on the initial (t = −1) distribution of the population, office

space, and office prices, {(L∗datal,−1 , B
data
l,−1 , q

data
l,−1 )}Ll=1, t = 0 worker choices over work mode,

{(µdataN,l,0, µ
data
R,l,0)}Ll=1, and location, {(πdatak,N,l,0, π

data
k,R,l,0)}L,Lk=1,l=1, along with a sequence of changes

in time-varying fundamentals (i.e., remote amenities ZR,t).
34

I use data from the 2018 ACS to measure the population distribution and from the 2019

ACS to compute conditional choice probabilities.35 The values of µdatar,l,0 and πdatak,r,l,0 correspond

to the share of individuals who resided in MSA l one year prior to the survey and live in

MSA k with remote status r at the time of the survey.36 For the distribution of office space, I

use commercial building stock estimates from the U.S. Department of Energy.37 Office price

distributions are constructed using transaction data from Attom Data Solutions.38

To simulate the remote work shock requires the time-path of the remote amenity, ZR,t,

which determines the relative attractiveness of remote work. In the U.S., the share of remote

employment rose from 5.8% in 2019 to a peak of 18.2% in 2021, before declining to 14.2%

by 2023.39 Survey evidence from Barrero et al. (2021) indicates that the remote share has

stabilized in this range, with 12.5% of workers reporting remote work as of May 2025. To

capture the long-run shift in real estate demand resulting from the remote shock, I calibrate

the increase in the remote amenity ZR = ZR,t∗−ZR,t∗−1 such that the model-implied remote

work share in 2023 matches the corresponding value in the 2023 ACS.

33Specifically, the dynamic exact-hat approach obviates the need to estimate moving costs ml,k, office-
sector TFP ABl , and regional amenities Xl.

34Appendix F provides derivations and further details of the exact-hat approach.
35The ACS sample is restricted to non-military, employed individuals. The ACS uses Public Use Microdata

Areas (PUMAs) for geographic identifiers. I map an individual’s residential or place of work PUMA to MSAs.
Note that as PUMA and MSA boundaries do not align, the matching process may assign an individual to
an MSA even if they live or work outside (but near) the MSA boundary. For residential PUMAs that
span MSAs, I assign residents of the PUMA to the MSA which contains the largest share of the PUMA’s
population. For place of work PUMAs that span MSAs, I assign the PUMA to the largest MSA. I assume
that non-remote workers are employed in the MSA where they live.

36In computing these choice probabilities, I exclude individuals who did not reside in one of the 234 MSAs
either at the time of the survey or one year prior.

37Source: link. I include buildings classified as “Office” and constructed before 2019.
38Source: link. Appendix L describes the construction of the office price distribution in detail.
39See Appendix A.
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4.3 Internally Calibrated Parameters

The remaining parameters are calibrated so that, when the model is initialized, key model-

generated moments match their pre-pandemic empirical counterparts or estimates from the

literature.

First, I calibrate the parameters governing production input shares: the remote share,

αl, and labor’s share of the non-remote input, ηl. These are chosen to match two empirical

targets: the remote wage premium and the income share of commercial office space. Given

the distribution of labor and office space in period t = −1, the first-order conditions for

tradable firms imply:40

wR,−1

wN,l,−1

=
αl

(1− αl)
·

φ
σ−1
σ R

− 1
σ

l,−1

B
(σ−1)(1−ηl)

σ
l,−1 ηlN

(σ−1)ηl−σ
σ

l,−1

, (34)

rl,−1Bl,−1

Y C
l,−1

=
(1− αl)(1− ηl)

(
Nηl
l,−1B

1−ηl
l,−1

)σ−1
σ

αl (φRl,−1)
σ−1
σ + (1− αl)

(
Nηl
l,−1B

1−ηl
l,−1

)σ−1
σ

. (35)

Equations (34) and (35) jointly determine αl and ηl conditional on the wage ratio, wR,−1/wN,l,−1,

and the office share of income, rl,−1Bl,−1/Y
C
l,−1. The wage ratio is computed using 2018 ACS

data on average wages by MSA.41 I assign the commercial office share of income using factor

income share estimates from Valentinyi and Herrendorf (2008).42

Next, the values for productivity in the tradable sector, ACl , are chosen so that the average

income of workers employed in region l matches its empirical counterpart in the 2018 ACS,

where the average wage income in the model is,

Rl,−1wR,−1 +Nl,−1wN,l,−1

Ll,−1

.

I calibrate the housing depreciation rate δh to match the 2019 average housing expenditure

share from the BLS Consumer Expenditure Survey. The model-implied average housing

40Data from the 2018 ACS is used to generate the period t = −1 labor distribution, {(Ndata
l,−1 , R

data
l,−1 )}Ll=1.

41Since the model implies a single wage for remote workers, I use the average wage across all remote
workers in the ACS sample to construct wR,−1.

42Valentinyi and Herrendorf (2008) decompose capital income into land, structures, and equipment.
Since the model abstracts from equipment, I reallocate its share to labor and office space: Office share =
(Land share + Structure share)/(1− Equipment share).
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expenditure share is:

L∑
l=1

∑
r∈{R,N}

L∑
k=1

µr,l,0πk,r,l,0L
∗
l,−1

(
pk,0h̄− (1− δh)pl,0h̄
(1− τk)wr,k,0 + Tr,k,0

)
,

where pl,0 is the average 2019 home price in region l, taken as the twelve-month average of

the Zillow Home Value Index. Finally, productivity in the residential construction sector

AHl is inferred from the housing market clearing condition and the first-order condition of

construction firms:

AHl =

(
L∗l,0h̄− L∗l,−1(1− δh)h̄

)1−ρHl

(pl,0ρHl )
ρHl
(
P̄H
l

)1−ρHl
, (36)

where L∗l,0 denotes the period zero population in region l, implied by the conditional choice

probabilities µdatar,l,0 and πdatak,r,l,0.

5 Quantitative Analysis

In this section, I use the calibrated model to quantify the effect of remote work on residential

and commercial real estate prices. Section 5.1 analyzes the impact of the remote work shock

on aggregate price levels. Section 5.2 then turns to distributional consequences, examining

how price changes vary across regions. Section 5.3 decomposes the overall price response

into contributions from distinct underlying mechanisms. Section 5.4 explores price and

welfare implications of place-based policies. Section 5.5 compares price dynamics predicted

by the model with those observed in the data. Section 5.6 explains the importance of the

residential-commercial real estate distinction.

5.1 Aggregate Effect of the Remote Shock

I begin by analyzing the aggregate effect of the remote shock on the evolution of residential

and commercial real estate prices. To do so, I construct price indices for residential and

commercial office real estate:

p̄t =
L∑
l=1

ωhl,tpl,t, (37)

q̄t =
L∑
l=1

ωbl,tql,t, (38)
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Figure 1: Evolution of real estate prices following the remote shock. A) Prices relative
to pre-shock baseline. B) Prices under the baseline (remote shock) economy relative to a
counterfactual economy absent the remote shock.

where the residential weights ωhl,t correspond to the period-t population share of region l,

and the commercial weights ωbl,t reflect region l’s share of the total office stock in period t.

These aggregate measures, p̄t and q̄t, capture both the direct effect of price changes across

space, and the shifting spatial distribution of economic activity through reallocation of the

population and office stock.43

Figure 1 displays the evolution of average real estate prices following the remote shock.44

Panel A shows that the spatial reallocation of workers triggered by the remote shock coincides

with an immediate, though modest, decline in average residential real estate prices. Over

the long run, however, this trend reverses: residential prices gradually recover, returning

to their pre-shock value after approximately 40 years. In contrast, commercial office prices

see a sharper and more persistent decline. In the two years after agents learn of the shock,

average office prices fall by 12% relative to their pre-shock value, followed by a continued

decline over the subsequent decades (−0.6% per year, on average).

How much of the change in real estate prices is directly attributable to the remote shock,

rather than pre-existing trends? Recall that the pre-shock economy is not in steady state,

but is instead on the transition path towards some unobserved steady state when the remote

shock hits. Thus, to isolate the effect of the remote shock from pre-shock trends, Panel

B of Figure 1 plots the change in prices under the baseline economy that experiences the

remote shock, relative to a counterfactual economy with constant fundamentals (i.e., absent

43Appendix M.1 decomposes the impact of the remote shock on the real estate price indices into contribu-
tions from price changes and from weight adjustments, and shows the aggregate effects of the remote shock
are primarily driven by price changes.

44Throughout the quantitative analysis, the period immediately preceding agents’ learning of the remote
shock serves as the baseline for comparison.
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the remote shock).45 In what follows, I refer to this relative change in prices as the “price

effect of the remote shock”.

Panel B shows that residential real estate prices initially decline but eventually rise

relative to the no-shock economy, mirroring the trajectory of the residential price index

in Panel A. This confirms that the residential price dynamics in the model are primarily

driven by the remote shock. Commercial office prices, by contrast, fall 4% in the two years

following the shock, but then stabilize relative to the no-shock baseline. Two implications

follow: (i) the long-run decline in office prices seen in Panel A is driven largely by pre-existing

trends; and (ii) the remote shock induced an immediate and persistent drop in the average

value of commercial office space.46 These aggregate results, however, mask the degree to

which the remote shock generates heterogeneous price effects across space, which I consider

in the next subsection.

5.2 Distributional Effects of the Remote Shock

Turning to the distributional consequences of the remote shock, Figure 2 shows the long-run

(steady state) real estate price effect of the remote shock across the 50 largest MSAs by

2019 population.47 The figure underscores that the aggregate effects reported above conceal

substantial regional variation. For example, Panel A shows the remote shock leads to a

more than 20% drop in residential prices for San Francisco relative to the no-shock economy.

In contrast, residential prices rise by over 20% in Austin due to the shock. Overall, the

residential price response is mixed, with 20 MSAs experiencing price increases while 30

see declines. Thus, the small, aggregate residential effect seen in Figure 1 is due not to a

quantitatively insignificant impact of the remote shock, but rather it arises from varying,

and often large, price effects across space.

Figure 2 Panel B shows a price response for commercial office space that is more consistent

with the aggregate results. In particular, the remote shock induces a decline in commercial

office prices in each of the 50 largest MSAs. These declines vary in magnitude, ranging

from modest (e.g., a −1% change in Orlando) to substantial (e.g., a −9% change in San

Francisco).

Figure 3 extends the analysis by plotting changes in residential and commercial office

45In the counterfactual no-shock economy, the remote amenity remains constant (ZR = 0). This is the
path agents anticipated prior to the shock’s realization.

46The predicted long-run decline in office prices is smaller than that estimated by Gupta, Mittal, and
Van Nieuwerburgh (2022) (41%). As discussed in Section 3, my model incorporates a complementarity effect
that increases the marginal product of office space, partially offsetting the negative impact of remote work.
These effects are absent in Gupta, Mittal, and Van Nieuwerburgh (2022). In Section 6, I show that my
model’s quantitative predictions are consistent with observed U.S. office prices through 2023.

47Results for all 234 MSAs are provided in Appendix M.3.
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Figure 2: Long-run real estate price effects of the remote shock for the 50 largest MSAs by
2019 population.

prices across the full sample of MSAs, distinguishing between the total change in prices

(Panel A) and the price effects of the remote shock (Panel B). The residential price effect

of the remote shock is positive in 44% of MSAs, indicating a split between gains and losses

consistent with that observed in the 50 largest MSAs. In contrast, the commercial office

price effect is negative in most MSAs (219 of 234), with positive price effects limited to only

a few small regions. Crucially, 99% of the pre-shock commercial office stock is located in

MSAs that experience a price decline due to the remote shock. This indicates that most

of the U.S. office real estate portfolio is at risk of becoming stranded following the rise of

remote work.48

Figure 3 also shows a strong correlation between residential and commercial real estate

markets in both total price changes (Panel A, correlation = 0.63) and in the price effects

of the remote shock (Panel B, correlation = 0.83). Thus, regions experiencing price gains

in one sector tend to gain, or lose less, in the other, producing “winners” (residential price

gains with relatively modest commercial losses) and “losers” (residential price declines with

large commercial losses) in the aftermath of the remote shock.

To summarize, the price effects of the remote work shock vary across MSAs and are

48Appendix M.2 provides a map of the price effects.
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Figure 3: A) Long-run change in residential and commercial office prices relative to the pre-
shock period. B) Long-run real estate price effects of the remote shock. Circle size reflects
2019 population.

strongly correlated between local residential and commercial office real estate markets. While

residential markets exhibit a mix of positive and negative responses, all but a few small

regions experience declines in commercial office prices due to the shock.

5.3 Inspecting the Mechanism

What drives the real estate price effects of the remote shock? In Section 3, I showed that

the shift in residential demand induced by the remote shock is determined by differential

migration rates between remote and non-remote workers as well as dynamic considerations

(Proposition 4). In terms of commercial demand, I showed greater substitutability between

remote and non-remote work in production increases the range of equilibria which lead to a

negative commercial office price effect (Proposition 2). What is the quantitative relevance

of each of these features vis-à-vis the economy’s initial conditions? To answer, I consider

seven model variations, each designed to isolate the contribution of a specific feature of

the economy: (i) differential migration rates between remote and non-remote workers; (ii)

dynamic considerations; (iii) the complementarity between remote and non-remote work;

(iv) the initial population distribution; (v) the initial distribution of residential prices; (vi)

the initial distribution of office space; and (vii) the initial distribution of office prices.49 Each

variation modifies only one feature of the baseline model at a time, holding all other features

fixed. This approach allows for a clean decomposition of the mechanisms through which the

49For (i), I equalize migration rates for remote and non-remote workers. For (ii), I set the worker discount
factor to zero. For (iii), I set the elasticity of substitution such that remote and non-remote work are
(almost) perfect substitutes. For (iv)-(vii), I set the relevant variables equal to their initial-period weighted
average across regions. See Appendix N for details.
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remote work shock reshapes real estate markets.

To quantify the contribution of each factor to the total price effect of the remote shock,

I compute the mean absolute change (MAC) in real estate prices between the baseline and

the no-shock economy:

MACh =
1

(T + 1)L

T∑
t=0

L∑
l=1

∣∣pno shockl,t − pbaselinel,t

∣∣ ,
MACb =

1

(T + 1)L

T∑
t=0

L∑
l=1

∣∣qno shockl,t − qbaselinel,t

∣∣ ,
where MACh measures the average absolute change in residential real estate prices, and

MACb captures the corresponding change in commercial office prices. Larger values of

MACh and MACb indicate a stronger effect of the remote shock on prices. For each of the

seven model variations (i)-(vii), I calculate the change in MACh and MACb relative to their

values under the full model. This allows for a comparison of the relative importance of each

factor in shaping the real estate price response to the remote shock. Table 3 reports the

contribution of each mechanism to the residential price effect (Panel A) and the commercial

price effect (Panel B). Negative values indicate a dampening of the remote shock’s price effect

(whether positive or negative), while positive values indicate an amplification. Additionally,

Panel C shows the change, relative to the full model, in the correlation between the price

effects of the remote shock in the residential and commercial office sectors.50

Column 1 reveals the residential price effect of the remote shock is almost entirely driven

by differential migration patterns between remote and non-remote workers. When migration

rates are equalized across worker types, the residential price response declines 99.97%, which

also leads to a 0.65 (78%) drop in the correlation between residential and commercial price

effects. In contrast, Column 2 shows no change in residential prices for the model with fully

myopic workers. Thus, the residential price effect of the remote shock is driven by the direct

effect—remote workers are more likely to move—as opposed to dynamic considerations.

Next, Column 3 evaluates the role of complementarities between remote and in-person

work in shaping the value of office space. Consistent with Proposition 2, when the two

are nearly perfect substitutes, the negative commercial price effect of the remote shock is

50The values reported in Table 3 Panel C correspond to the change in the correlation between long-run
(i.e., steady-state) residential and commercial price effects, where the correlation is given by:

Corr(
pbase.l,ss − pno shockl,ss

pno shockl,ss

,
qbase.l,ss − qno shockl,ss

qno shockl,ss

).
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Table 3: Sources of Remote Shock Price Effects

Amplification of price effects due to...

Migration
Rates

Dynamic
Considera-

tions

Complemen-
tarity
Effect

Initial Pop.
Dist.

Initial Res.
Prices

Initial
Com. Dist.

Initial
Com.
Prices

(1) (2) (3) (4) (5) (6) (7)

Panel A: Residential Prices
−99.97 0.00 0.13 86.85 34.79 −0.01 −0.01

Panel B: Commercial Prices
−3.88 0.05 8.78 42.31 0.04 68.12 48.69

Panel C: Residential-Commercial Spread
−0.65 0.00 −0.01 −0.46 −0.00 −0.34 −0.04

Note: Panel A reports the percent change in MACh from the full model to alternative specifica-
tions with: initial migration rates equalized between remote and non-remote workers, Column (1);
fully myopic workers, Column (2); almost perfect substitutability between remote and non-remote
inputs, Column (3); initial populations equalized across regions, Column (4); initial residential
prices equalized across regions, Column (5); initial office space equalized across regions, Column
(6); initial office prices equalized across regions, Column (7). Panel B reports similar statistics for
MACb. Panel C reports the change in the correlation between residential and commercial price
effects of the remote shock.

amplified 9%. On the other hand, the effect on residential prices is negligible.

Columns 4 - 7 explore the quantitative importance of the economy’s initial conditions.

Consider first the distribution of residential space (Column 4) and prices (Column 5). Im-

posing a uniform population across regions substantially increases the average effect of the

remote shock on both residential (87%) and commercial (42%) real estate prices. Conversely,

the correlation between the residential and commercial price effects falls by 0.46, or 56%. A

uniform initial residential price distribution also increases the magnitude of the residential

price effects, though to a lesser degree (35%). Instead, the initial population distribution

plays the quantitatively larger role, by dampening the magnitude of the remote shock’s

impact and aligning its effects across the two real estate markets.

Finally, Columns 6 and 7 examine the role of the initial distribution of commercial office

real estate, decomposed into contributions from floorspace (Column 6) and prices (Column

7). Both factors materially influence the commercial real estate response, but the spatial

distribution of floorspace is especially important: the uniform distribution increases the

magnitude of the commercial price effect by 68%, compared with a smaller 49% increase

from the uniform price distribution. This highlights that the economy’s initial allocation of

office space is the key determinant of the commercial sector’s sensitivity to the remote shock.
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By contrast, the impact on residential prices is minimal.

To summarize, the residential price effect of the remote shock is determined by migration

patterns of remote workers, who move at a higher rate than their non-remote counterparts.51

The initial distribution of office space is the most important factor for the commercial price

effect, and serves to dampen the impact of the remote shock. In the next section, I explore the

price and welfare implications of place-based policies aimed at both remote worker migration

and the local stock of office space.

5.4 Place-based Policies

A number of local policies have been implemented to address the regional impacts of the

remote shock. This section examines the welfare implications of two such interventions which

target the key drivers of the shock’s price effects identified above: remote migration rates and

the distribution of commercial office space. First, several locales have offered cash subsidies

to attract remote workers.52 Second, cities such as New York and San Francisco have sought

to facilitate office-to-residential conversions by streamlining regulations and adjusting zoning

restrictions.53

To study the local impact of these place-based policies, I consider counterfactual economies

for which MSAs implement two types of interventions: a subsidy for remote workers and

a policy allowing office-to-residential conversion.54 I consider both price and welfare impli-

cations of each policy. Rather than taking a stand on the relative weight of workers and

owners in a social welfare function, I separately report the welfare effects of each policy on

each type of agent. The change in period-t welfare for a worker who begins the period in

region l with remote status r (expressed in consumption-equivalent units) is given by,

δwl,r,t =

−1 +


∑∞

s=0 β
s

(
(cwCl,r,l,t+s)

1−γ

1−γ − ln
(

(µCr,l,t+s)
νr (πCl,r,l,t+s)

νl

(µBr,l,t+s)
νr (πBl,r,l,t+s)

νl

))
∑∞

s′=0 β
s′

(
cwB
l,r,l,t+s′

)1−γ

1−γ


1/(1−γ)

× 100, (39)

where cwBl,r,l,t and cwCl,r,l,t denote consumption under the baseline (no-policy) and counterfactual

51In Appendix M.2, I show that pre-shock remote worker migration is positively correlated with residential
price effects of the remote shock.

52Examples include Tulsa Remote in Tulsa, OK, and Ascend West Virginia.
53See the report from the New York City Comptroller, as well as this announcement from the City of San

Francisco.
54I assume that policies are introduced in the period when agents first learn about the remote shock, and

that they are unanticipated prior to implementation. For computational tractability, each counterfactual
economy features only one region implementing a policy response to the remote shock.
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(policy) economies, respectively.55 Likewise, µBr,l,t+s, π
B
l,r,t+s are baseline choice probabilities,

and µCr,l,t+s, π
C
l,r,t+s are the corresponding counterfactual probabilities. Notice worker welfare

depends not only on consumption in the two policy regimes, but also on the relative option

value of remaining in region l and work mode r, captured by the (log) shares of agents making

those choices. These are scaled by the parameters νr and νl, which govern the variance of

preference shocks. Analogously, the welfare effect of a policy for commercial office owners is

given by

δol,t =

−1 +

 ∑∞
s=0 β

s (coCl,s )1−γ

1−γ∑∞
s′=0 β

s′
(coB
l,s′ )

1−γ

1−γ

1/(1−γ)
× 100, (40)

where coBl,t and coCl,t denote the owner’s consumption in the baseline and counterfactual

economies, respectively. Table 4 summarizes the local welfare effects of each policy rela-

tive to an economy that experiences the remote shock in the absence of policy intervention

for the twenty largest MSAs.56

5.4.1 Remote Subsidy

Consider a subsidy for remote workers that increases the transfer payment TR,l,k,t to a remote

worker who migrates to region l from another region k 6= l. Motivated by the Tulsa Remote

program, I model this policy as a one-time payment to remote workers who resided outside

of l in the previous period, raising their rebate by $10,000 (in consumption units) relative

to other residents of l.57 This policy generates several competing effects on the welfare of

workers in region l. First, the increase in housing demand from subsidized remote workers in

period t raises the contemporaneous housing price pl,t, boosting the consumption of current

residents through higher housing wealth. Second, the permanent increase in remote workers’

housing demand pushes up future housing prices pl,t+j for j > 0, raising the cost of remaining

in region l. Third, the reallocation of labor across regions induced by the subsidy alters

(current and future) equilibrium wages. Finally, the rebate, which is financed by labor taxes

on region-l workers, reduces the rebate to other residents of l. The net welfare effect of the

55Equation 39 generalizes the welfare measure used by Caliendo et al. (2019) to the case of CRRA utility
with a two-stage discrete choice structure. Full derivations are provided in Appendix G.

56Welfare is evaluated in the period the policy is implemented, t = t∗ − 1. For worker welfare, I report
the weighted average of δwl,r,t∗−1 across work modes r ∈ R,N , using the share of workers in each mode as
weights.

57Unlike the Tulsa Remote program, which is funded by a non-profit organization, I assume the remote
subsidy is financed by a labor tax.
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Table 4: Welfare Effects of Place-based Policies

Remote Subsidy Office Conversion

Workers Owners Workers Owners
(1) (2) (3) (4)

New York −0.031 0.001 0.404 0.037
Los Angeles −0.251 0.001 −5.463 3.326
Chicago −0.033 0.000 0.646 −0.000
Dallas 2.091 0.001 −18.467 0.819
Houston 1.939 −0.000 −18.236 0.461
Washington −0.068 0.001 −18.410 2.049
Miami −0.037 0.000 0.541 −0.000
Philadelphia 0.366 0.000 −2.302 0.085
Atlanta 0.805 0.000 −22.705 0.925
Phoenix −0.096 0.001 −17.185 2.256
Boston 0.030 0.001 −57.834 0.910
San Francisco −1.159 0.001 −60.270 2.571
Detroit 0.023 0.000 0.570 0.000
Seattle 13.265 −0.001 −30.724 2.744
Minneapolis −0.037 0.000 −29.045 1.114
San Diego −0.190 0.000 0.061 0.000
Tampa 0.411 0.001 −23.716 1.992
Denver −0.341 0.001 −57.298 3.019
St. Louis −0.038 0.000 0.013 0.000
Baltimore 0.595 0.001 1.034 0.000

Top 20 0.862 0.001 −17.919 1.115
All MSAs 0.918 0.000 −7.288 0.636

Note: The table reports the welfare effects for workers (Column 1) and owners (Column 2) of
a remote-subsidy, and the welfare effects for workers (Column 3) and owners (Column 4) of an
office-conversion policy. Welfare is expressed in consumption-equivalent percentage points for the
twenty largest MSAs (by 2018 population), as well as the average across the twenty largest MSAs
and the average across all MSAs.

subsidy on region-l workers depends on the relative strength of these forces.58

The first two columns of Table 4 report the welfare effects of the remote worker subsidy.

Among the twenty largest MSAs, the effects on workers are mixed, with roughly as many

regions experiencing gains as losses. Most effects are modest—generally less than one percent

of annual consumption—though some cities (Dallas, Houston, Seattle) see larger positive

gains. Across all MSAs, 48% experience positive worker welfare effects, with an average gain

58For regions with labor tax rate τl = 0, I set τl under the policy counterfactual to the average across
regions k for which τk > 0.
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Figure 4: Change in real estate prices under place-based policies, relative to the no-policy
baseline. Light gray lines show price effects for each region. Dark black lines show the
average price effects across regions.

equivalent to 0.918% of annual consumption. By contrast, Column 2 shows that the welfare

effect on owners is negligible.

What is the real estate price effect of the remote subsidy? Panels A and B of Figure 4

show the changes in residential and commercial office prices induced by the policy, relative to

the no-policy baseline. The figure confirms that the demand shifts generated by the $10,000

subsidy are too small to produce meaningful changes in either residential or commercial office

prices.

5.4.2 Office Conversion

I next consider an environment in which commercial office owners are free to convert part

of the office stock into residential housing and sell it on the local housing market after the

realization of the remote shock (e.g., following changes in zoning regulations prompted by

the shock). Conversion is assumed to be one-directional: office space can be transformed into

residential housing, but not vice versa. At the start of each period, the owner may choose to
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convert al,t ∈ [0, ϕbl,t] units of office space into ψal,t units of residential housing at a constant

marginal cost z, where ϕ is the share of office space eligible for conversion in period t. The

owner’s budget constraint in (8) is updated to reflect revenue received from office space net

of conversion, rl,t(bl,t − al,t), as well as the revenue generated by the converted real estate,

(ψpl,t − z)al,t:

col,t + ql,txl,t = rl,t(bl,t − al,t) + (ψpl,t − z)al,t.

Conversion costs z represent all explicit (e.g., construction) and implicit (e.g., regulatory)

expenses, and are destroyed during the conversion process.59 The law of motion for office

capital in (9) becomes

bl,t+1 = xl,t + (1− δb)(bl,t − al,t),

while the residential (equation (19)) and office (equation (21)) market-clearing conditions

are modified to account for conversion:

L∗l,th̄ = L∗l,t−1(1− δh)h̄+ Y H
l,t + ψal,t,

Bl,t = bl,t − al,t.

The owner’s optimal conversion rule is straightforward: conversion occurs whenever the net

return from converting exceeds the present value of keeping a unit of office space,

ψpl,t − z ≥ rl,t + ql,t(1− δb).

Based on estimates from Gupta et al. (2023) of the share of office space suitable for

conversion, I set ϕ = 0.09. To calibrate the conversion cost z and efficiency parameter ψ,

I use evidence from recent office-to-residential projects documented in a 2023 Urban Land

Institute report.60 Among the fifteen projects for which cost data are reported, the average

conversion cost was $236 per square foot, with an average residential unit size of 1,152 square

59Alternatively, one could assume convex adjustment costs, in line with the macro literature on capital
adjustment (e.g., Gould, 1968):

z1al,t + z2

(
al,t
ϕbl,t

)κ
ϕbl,t,

for κ > 1. However, since the share of office stock converted each year is small (0.04% annually pre-pandemic,
according to a Goldman Sachs report), the linear term is likely to dominate.

60Source: link.
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feet, which I use to calibrate z and ψ, respectively.61 The results of the office conversion

counterfactuals are reported in Table 4, Columns 3 and 4.

Among the twenty largest MSAs, owners in six regions choose not to convert any office

space. In the remaining regions, an average of 0.4% of the office stock is converted to

residential use annually in the decade following the remote shock. Column 3 shows that the

office conversion policy generally results in substantial declines in worker welfare, with an

average loss equivalent to 18% of annual worker consumption. Across all MSAs, the average

welfare loss for workers is 7%.

Turning to commercial office owners, Column 4 shows the office conversion policy gener-

ates welfare gains for owners of office real estate. The policy allows them to participate in

the residential market, effectively expanding their choice set from al,t ∈ {0} to al,t ∈ [0, ϕbl,t].

This leads to average welfare gain for owners of 1.12% in the largest regions and 0.64% across

all MSAs.

Figure 4 shows the residential and commercial price effects of the office conversion policy.

The increase in residential supply generates persistent price declines, with average prices

across markets falling by 10% relative to the baseline, 50 years after the remote shock. Com-

bined with the worker welfare losses reported in Table 4, this suggests that the reduction in

workers’ housing wealth outweighs the benefit of lower housing costs. By contrast, commer-

cial owners experience gains in the value of the office stock, with prices 0.63% higher after

50 years, partially offsetting the negative commercial office price effect of the remote shock

reported in Section 5.1.

To summarize, the effects of place-based policies in response to the remote shock vary

both by location and by policy type (remote subsidy vs. office conversion). Remote subsidies

generally produce modest price and welfare effects, though some regions experience larger

worker welfare gains. In contrast, the office conversion policies lead to substantial shifts

in both residential and commercial prices, along with pronounced welfare effects, typically

reducing worker welfare while benefiting owners.

61I set ψl = 1/(1152 × Pop2018), where Pop2018 is the 2018 residential population of the 234 MSAs. I
choose z such that the model-implied cost of conversion relative to the average price of office space (from
(38)) matches the corresponding ratio in the Attom data for model year 2018 (t = −1):

z

q̄ model−1
=

236

q̄ data−1
.
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Table 5: Price Growth in the Model and Data

Residential Commercial
(1) (2)

Log Price Growth (model) 0.214∗∗∗ 1.379∗∗∗

(0.053) (0.410)

Observations 234 225
R2 0.066 0.048

Note: In Column (1), the dependent variable is the log change in real residential prices from the
pre-shock period (2018) to the post-shock period (2023), based on Zillow data. In Column (2), the
dependent variable is the log change in real commercial prices from the pre-shock period (2010-
2018 average) to the post-shock period (2020-2023 average). Commercial price averages exclude
the bottom and top deciles of the price distribution within each region and period. Column (2)
includes fewer observations because some regions lack commercial price data in the post-shock
period. Standard errors are reported in parentheses.

5.5 Model Validation

Do the model-predicted changes in real estate prices align with those observed in the data?

Table 5 examines the relationship between model-predicted changes in real estate prices from

the pre- to post-shock period and those observed in the data. Recall the quantitative model is

initialized so that the initial price distributions exactly match their empirical counterparts.62

Accordingly, the coefficient estimates capture the model’s ability to replicate real estate price

growth, conditional on starting from the same initial price distribution as in the data.

The coefficient estimates indicate a positive and statistically significant relationship be-

tween price growth predicted by the model and that observed in the data. A one-percent

increase in residential price growth predicted by the model is associated with a 0.214% in-

crease in residential prices in the data, while the corresponding effect for commercial prices

is 1.379%. Hence, the model aligns reasonably well with observed price trends, particularly

for commercial office space. Note that the estimates in Table 5 reflect the total change in

real estate prices, not just the component directly attributable to the remote shock. Section

6 additionally presents empirical estimates of the effect of remote work on commercial office

prices.

62Productivity in the residential construction sector is calibrated so that the residential price distribution
in period t = 0 matches the 2019 Zillow Price Index (Section 4.3). For consistency with the commercial price
distribution, which is initialized in period t = −1, I instead use the 2018 Zillow index as the pre-period in
Table 5, which does not directly enter the model.
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5.6 Why the Residential-Commercial Distinction Matters

Existing spatial models of remote work which explicitly incorporate the use of floorspace

as both a residence and an input to production often treat all real estate as a single asset

class, as opposed to distinguishing between residential and commercial space.63 However,

this treatment fails to capture either differences in their aggregate dynamics (Section 5.1),

or the diverse distributional impacts on each real estate type (Section 5.2). Further, while

real estate price effects are correlated across residential and commercial office markets, it is

unclear to what extent demand shifts are driven by one market or the other without explicitly

distinguishing between the two.

To illustrate these ideas, consider the quantitative implications of a model in which

floorspace used for residential purposes is perfectly substitutable with that used in production

of the consumption good. Namely, this implies that growth in the local price of unified

(residential and commercial) floorspace, punil,t , is determined by changes in demand due to

both migration by workers and investment by the local commercial owner:

punil,t

punil,t−1

=

( (
L∗l,t − L∗l,t−1(1− δh)

)
h̄+ ψxl,t(

L∗l,t−1 − L∗l,t−2(1− δh)
)
h̄+ ψxl,t−1

)(1−ρunil )/ρunil

,

where ρunil /(1 − ρunil ) is the local elasticity of floorspace supply.64 Figure 5 compares the

price effects of the remote shock under the benchmark economy (x-axis) with that for a

counterfactual economy in which floorspace is perfectly substitutable across local real estate

markets (y-axis).65 If price effects are identical under the two specifications—that is, if the

distinction between residential and commercial office space is quantitatively irrelevant—each

dot showing the price effects for a single MSA should lie on the red 45 degree line.

Panel A of Figure 5 shows that residential price effects are nearly identical whether or

not one distinguishes between the sources of real estate demand. However, the distinction

becomes quantitatively relevant when one considers the effect on commercial office space,

as shown by Panel B. In particular, while the benchmark model predicts a negative price

effect in most MSAs (most dots lie to the left of the vertical axis), the price effects in the

counterfactual model without the residential-commercial distinction are approximately split

between price gains and losses. Thus, one of the main quantitative predictions of the model

of a decline in the value of most commercial office space due to the remote shock is absent

63Behrens et al. (2024) assume workers purchase homes and firms purchase office space in a single market.
In Delventhal and Parkhomenko (2024), workers demand floorspace as both an input to production and for
housing consumption.

64The parameter ψ converts commercial office into residential floorspace (see Section 5.4.2).
65Details regarding the calibration of the counterfactual economy are provided in Appendix O.
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Figure 5: Price effects of the remote shock under both the benchmark economy and the
counterfactual economy with perfectly substitutable real estate across sectors. Circle size
reflects 2019 population.

without the explicit distinction between residential and commercial office markets.

6 Empirical Evidence

What is the effect of local exposure to remote work on the price of real estate? The effect on

residential prices has been estimated in several previous studies (see Section 1.1), however the

effect on commercial real estate has received considerably less attention. Unlike residential

real estate, there is little publicly available data on commercial prices at the local level. To

address this, I construct a regional commercial price index using office transaction data from

Attom, and estimate the reduced form effect of remote work on average office prices.66

I adopt a similar approach to that used in estimating the elasticity of substitution (Section

4.1.1), employing a two-stage least squares strategy to isolate the effect of remote work on

office prices. The identification leverages plausibly exogenous pre-pandemic variation in

exposure to the remote shock. Specifically, I estimate the following system:

First Stage: Zl,t = δWl,t + βXl,t + ζl + θt + εl,t, (41)

Second Stage: Yl,t = πẐl,t + γXl,t + µl + κt + νl,t, (42)

where Zl,t is the (log) remote share of employment in MSA l and year t, Yl,t is the (log) average

real sale price of office space in MSA l and year t, and Xl,t is a vector of controls, including

both building characteristics of the properties sold in l and other economic attributes of MSA

66Appendix I shows that the Attom office data closely tracks an International Monetary Fund index for
U.S. commercial real estate prices.
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Table 6: IV Estimation Results

OLS First Stage Reduced
Form

2SLS Model

Dependent Variable: Log Price Log Remote Log Price Log Price Log Price
(1) (2) (3) (4) (5)

Log Remote (Regional) −0.385∗∗ −0.925∗∗∗ −1.826∗∗∗

(0.156) (0.283) (0.176)
Log Exposure × Agg. Remote 14.286∗∗∗ −13.217∗∗∗

(1.388) (3.822)
Avg. Age (Decades) −0.001 0.001 −0.002 −0.001

(0.003) (0.001) (0.003) (0.003)
Avg. Square Feet (1,000s) 0.017∗∗∗ 0.001∗ 0.016∗∗∗ 0.016∗∗∗

(0.003) (0.000) (0.003) (0.003)
Labor Force (Millions) −1.205∗ −0.174∗ −1.025∗ −1.186∗∗ 16.202∗∗∗

(0.627) (0.106) (0.573) (0.594) (4.995)
Industry −7.794 3.009∗ −5.275 −2.491

(5.431) (1.710) (5.456) (6.355)

MSA FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
N 847 847 847 847 19,188

Note: Columns (1) through (4) show results of the estimation using the office transaction data.
Controls include the average age of buildings being sold, their average square feet, the size of the
labor force in the MSA, and a Bartik-style control for aggregate, industry-level employment trends.
Column (5) shows results of an OLS regression using model-generated data. Standard errors are
clustered at the MSA level.

l. The instrument Wl,t, given by equation (33), captures MSA-level exposure to the remote

shock interacted with aggregate remote employment trends. I include MSA fixed effects

(ζl, µl) and year fixed effects (θt, κt) to account for unobserved region-specific characteristics

and aggregate shifts in demand for office space. Estimation results are reported in columns

1-4 of Table 6.

The OLS estimate in Column 1 indicates that higher rates of remote work are associated

with lower average office prices, conditional on local economic and building characteris-

tics. However, as with the estimation of remote work substitutability, the OLS estimate is

likely biased by unobserved shocks to the demand for office space. To address this concern,

Columns 2-4 present results from the IV specification. Column 2 shows that the instrument

is strongly correlated with the local remote share (first-stage F-statistic = 106.04). The neg-

ative coefficient on the instrument in Column 3 implies that regions with greater exposure

to the remote shock, driven by their industrial composition, experience larger declines in

office values. Finally, Column 4 confirms a negative effect of remote work on office prices:

a one percent increase in the remote share of employment in MSA l is estimated to reduce

the average sale price of office space in that MSA by −0.925 percent, conditional on building
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characteristics and local labor force size.67

Do the model predictions align with this estimated effect of remote work on office prices?

To answer, Column 5 of Table 6 provide an estimate of the relationship between remote

work rates and office prices using model-generated data. The results show an elasticity of

commercial prices with respect to the remote share of −1.826. To put this in perspective,

the estimate implies a one standard deviation increase in the logarithm of the remote share

reduces average commercial prices by 49%, compared to a 45% reduction in the data (Column

4).68 Thus, the effect of remote work on commercial office prices predicted by the quantitative

model closely aligns with that estimated from transaction data.

7 Conclusion

In this paper, I study the effect of the remote work shock on the spatial distribution of

residential and commercial office real estate prices. To do so, I develop a quantitative spatial

model featuring workers who migrate and choose whether to work remotely, endogenous

investment by owners in new office space, and firms which hire labor and rent office space.

I highlight the competing effects on commercial office rents from remote work, as well

as identify the substitutability of remote for non-remote work as driving the magnitude

of these effects. Additionally, I show the residential demand effect of the remote shock

depends on differential migration patterns between remote and non-remote workers, while

house price dynamics introduce additional considertions into the workers’ location problems.

Quantitatively, I find the effect of the remote shock on residential prices is mixed, while most

regions see a negative effect on commercial office prices. I then decompose the real estate

price effects of the remote shock into the contributions from various model mechanisms,

and identify differential migration rates as the driver for residential prices, while commercial

office price effects are determined by the initial distributions of office space. The welfare

effects of place-based policies are mixed: a remote subsidy tends to generate small welfare

effects, while the office conversion policy leads to large welfare losses for workers and gains

for commercial office owners. Finally, I empirically estimate the effect of remote work on

commercial office prices, and show the magnitude of the estimated effect aligns with that

predicted by the model.

67Appendix P.1 shows the results of an event study design, confirming the absence of pre-trends based on
remote exposure.

68A one standard deviation increase in the log remote share corresponds to a (exp(sZ · π̂)−1) ·100 percent
change in prices, where π̂ corresponds to the coefficient estimate reported in Table 6, and sZ is the standard
deviation of the (log) remote share. I compute the product sZ · π̂ separately using the standard deviation
and coefficient estimates from the model, and those generated from the real estate data.
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Bagga, S., Mann, L. F., Şahin, A., & Violante, G. L. (2025). Job amenity shocks and labor
reallocation (tech. rep.). National Bureau of Economic Research.

Barrero, J. M., Bloom, N., & Davis, S. J. (2021). Why working from home will stick (tech.
rep.). National Bureau of Economic Research.

Barrero, J. M., Bloom, N., & Davis, S. J. (2023). The evolution of work from home. Journal
of Economic Perspectives, 37 (4), 23–49.

Baum-Snow, N., & Han, L. (2024). The microgeography of housing supply. Journal of Po-
litical Economy, 132 (6), 1897–1946.

Behrens, K., Kichko, S., & Thisse, J.-F. (2024). Working from home: Too much of a good
thing? Regional science and urban economics, 105, 103990.

Bilal, A., & Rossi-Hansberg, E. (2021). Location as an asset. Econometrica, 89 (5), 2459–
2495.

Bloom, N., Liang, J., Roberts, J., & Ying, Z. J. (2015). Does working from home work?
evidence from a chinese experiment. The Quarterly journal of economics, 130 (1),
165–218.

Bond-Smith, S., & McCann, P. (2024). Shadows and donuts: The work-from-home revolution
and the performance of cities. Journal of Regional Science.

Brueckner, J. K., Kahn, M. E., & Lin, G. C. (2023). A new spatial hedonic equilibrium
in the emerging work-from-home economy? American Economic Journal: Applied
Economics, 15 (2), 285–319.

Caliendo, L., Dvorkin, M., & Parro, F. (2019). Trade and labor market dynamics: General
equilibrium analysis of the china trade shock. Econometrica, 87 (3), 741–835.

Chen, Y., Cortes, P., Kosar, G., Pan, J., & Zafar, B. (2023). The impact of covid-19 on
workers’ expectations and preferences for remote work. AEA Papers and Proceedings,
113, 556–561.

Davis, M., Ghent, A., & Gregory, J. (2024). The work-from-home technology boon and its
consequences. Review of Economic Studies, rdad114.

Davis, M. A., Fisher, J. D., & Whited, T. M. (2014). Macroeconomic implications of ag-
glomeration. Econometrica, 82 (2), 731–764.

Delventhal, M., & Parkhomenko, A. (2024). Spatial implications of telecommuting. Available
at SSRN 3746555.

Delventhal, M., Kwon, E., & Parkhomenko, A. (2022). Jue insight: How do cities change
when we work from home? Journal of Urban Economics, 127, 103331.

45



Desmet, K., Nagy, D. K., & Rossi-Hansberg, E. (2018). The geography of development.
Journal of Political Economy, 126 (3), 903–983.

Dingel, J. I., & Neiman, B. (2020). How many jobs can be done at home? Journal of public
economics, 189, 104235.

Favilukis, J., Ludvigson, S. C., & Van Nieuwerburgh, S. (2017). The macroeconomic effects
of housing wealth, housing finance, and limited risk sharing in general equilibrium.
Journal of Political Economy, 125 (1), 140–223.

Feenberg, D., & Coutts, E. (1993). An introduction to the taxsim model. Journal of Policy
Analysis and management, 12 (1), 189–194.

Ghent, A. C., Torous, W. N., & Valkanov, R. I. (2019). Commercial real estate as an asset
class. Annual Review of Financial Economics, 11 (1), 153–171.

Giannone, E., Li, Q., Paixao, N., & Pang, X. (2023). Unpacking moving: A quantitative
spatial equilibrium model with wealth (tech. rep.). Bank of Canada Staff Working
Paper.

Gibbs, M., Mengel, F., & Siemroth, C. (2023). Work from home and productivity: Evidence
from personnel and analytics data on information technology professionals. Journal
of Political Economy Microeconomics, 1 (1), 7–41.

Gokan, T., Kichko, S., Matheson, J. A., & Thisse, J.-F. (2022). How the rise of teleworking
will reshape labor markets and cities (tech. rep.). CESifo Working Paper.

Gould, J. P. (1968). Adjustment costs in the theory of investment of the firm. The Review
of Economic Studies, 35 (1), 47–55.

Gupta, A., Martinez, C., & Van Nieuwerburgh, S. (2023). Converting brown offices to green
apartments (Policy Proposal). The Hamilton Project, Brookings Institution.

Gupta, A., Mittal, V., Peeters, J., & Van Nieuwerburgh, S. (2022). Flattening the curve:
Pandemic-induced revaluation of urban real estate. Journal of Financial Economics,
146 (2), 594–636.

Gupta, A., Mittal, V., & Van Nieuwerburgh, S. (2022). Work from home and the office real
estate apocalypse.

Guren, A. M., Krishnamurthy, A., & McQuade, T. J. (2021). Mortgage design in an equilib-
rium model of the housing market. The Journal of Finance, 76 (1), 113–168.

Heblich, S., Redding, S. J., & Sturm, D. M. (2020). The making of the modern metropolis:
Evidence from london. The Quarterly Journal of Economics, 135 (4), 2059–2133.

Howard, G., Liebersohn, J., & Ozimek, A. (2023). The short-and long-run effects of remote
work on us housing markets. Journal of Financial Economics, 150 (1), 166–184.

International Monetary Fund. (2025). Commercial real estate prices for united states [com-
repusq159n] [Retrieved from FRED, Federal Reserve Bank of St. Louis]. Retrieved
June 20, 2025, from https://fred.stlouisfed.org/series/COMREPUSQ159N

Kleinman, B., Liu, E., & Redding, S. J. (2023). Dynamic spatial general equilibrium. Econo-
metrica, 91 (2), 385–424.

Liu, S., & Su, Y. (2021). The impact of the covid-19 pandemic on the demand for density:
Evidence from the us housing market. Economics letters, 207, 110010.

Mondragon, J. A., & Wieland, J. (2022). Housing demand and remote work (tech. rep.).
National Bureau of Economic Research.

Monte, F., Porcher, C., & Rossi-Hansberg, E. (2023). Remote work and city structure (tech.
rep.). National Bureau of Economic Research.

46

https://fred.stlouisfed.org/series/COMREPUSQ159N


Piazzesi, M., & Schneider, M. (2009). Momentum traders in the housing market: Survey
evidence and a search model. American Economic Review, 99 (2), 406–411.

Ramani, A., & Bloom, N. (2021). The donut effect of covid-19 on cities (tech. rep.). National
Bureau of Economic Research.

Richard, M. (2024). The spatial and distributive implications of working-from-home: A gen-
eral equilibrium model (tech. rep.). Working Paper. UCL.

Roback, J. (1982). Wages, rents, and the quality of life. Journal of political Economy, 90 (6),
1257–1278.

Rosen, S. (1979). Wage-based indexes of urban quality of life. Current issues in urban eco-
nomics, 74–104.

Rosenthal, S. S., Strange, W. C., & Urrego, J. A. (2022). Jue insight: Are city centers losing
their appeal? commercial real estate, urban spatial structure, and covid-19. Journal
of Urban Economics, 127, 103381.

Ruggles, S., Flood, S., Sobek, M., Backman, D., Chen, A., Cooper, G., Richards, S., Rodgers,
R., & Schouweiler, M. (2024). IPUMS USA: Version 15.0 [dataset]. https://doi.org/
10.18128/D010.V15.0

Saiz, A. (2010). The geographic determinants of housing supply. The Quarterly Journal of
Economics, 125 (3), 1253–1296.

Valentinyi, A., & Herrendorf, B. (2008). Measuring factor income shares at the sectoral level.
Review of Economic Dynamics, 11 (4), 820–835.

Yoo, H. (2024). The welfare consequences of incoming remote workers for local residents.
Available at SSRN 5288300.

47

https://doi.org/10.18128/D010.V15.0
https://doi.org/10.18128/D010.V15.0


Appendix

A Remote Share Over Time

Figure 6: Remote share of employment
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Note: Remote share of U.S. employed workers (excluding armed forces), 21 and over. Source:
American Community Survery (Ruggles et al., 2024)

B Proofs of Propositions

B.1 Proof of Proposition 1

Holding the total supply of labor and the stock of office space fixed, one can express the

rental rate of office space, r, given by the firm’s first order condition (14), as a function of

remote labor,

r(R) =
∂Y C(Y R(R), Y N(N(R), B))

∂Y N

∣∣∣∣
B=B̄

× ∂Y N(N(R), B)

∂B

∣∣∣∣
B=B̄

, (43)

where N(R) = L̄−R. Differentiating (43) with respect to R gives (26). Since N ′(R) = −1,

and by assumption, ∂2Y C/∂(Y N)2 < 0, ∂Y N/∂N > 0, ∂2Y C/∂Y N∂Y R ≥ 0, ∂Y R/∂R > 0,

and Y N/∂B > 0, the first term on the right hand side of (26) (complementary effect) is

positive. Further, since ∂Y C/∂Y N > 0 and ∂2/∂B∂N > 0 by assumption, the second term

on the right hand side of (26) (substitution effect) is negative.
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B.2 Proof of Lemma 1

Under the functional form in (27), the rental rate of office space is

r = AC
[
α (φR)

σ−1
σ + (1− α)

(
NηB1−η)σ−1

σ

] 1
σ−1

(1− α)N
(σ−1)η
σ (1− η)B

(σ−1)(1−η)−σ
σ . (44)

Setting N = L̄−R, and differentiating (44) with respect to R gives

∂r

∂R
= AC(1− α)(1− η)B

(σ−1)(1−η)−σ
σ

[
α (φR)

σ−1
σ + (1− α)

(
(L̄−R)ηB1−η)σ−1

σ

] 1
σ−1

(L̄−R)
(σ−1)η
σ

×

{
1

σ

[
α (φR)

σ−1
σ + (1− α)

(
(L̄−R)ηB1−η)σ−1

σ

]−1 (
α(φ)

σ−1
σ R−1/σ

−(1− α)η
(
L̄−R

) η(σ−1)−σ
σ (B1−η)

σ−1
σ

)
− (σ − 1)η

σ

(
L̄−R

)−1}
.

This is negative if and only if

α(φ)
σ−1
σ R−

1
σ − (1− α)η

(
L̄−R

) η(σ−1)−σ
σ (B1−η)

σ−1
σ[

α (φR)
σ−1
σ + (1− α)

(
(L̄−R)ηB1−η

)σ−1
σ

] (
L̄−R

)
− (σ − 1)η ≤ 0.

Let

F (R) =
α(φ)

σ−1
σ R−

1
σ

(
L̄−R

)
− (1− α)η

(
L̄−R

) η(σ−1)
σ (B1−η)

σ−1
σ[

α (φR)
σ−1
σ + (1− α)

(
(L̄−R)ηB1−η

)σ−1
σ

] − (σ − 1)η

=
T1(R)− T2(R)

T3(R)
− (σ − 1)η,

defined for R ∈ (0, L̄), so that the inequality holds for F (R) ≤ 0. Consider the limit as R

approaches L̄. In this case, T1(R) → 0, while the behavior of T2(R) and T3(R) depend on

the value of σ > 0.

• If σ > 1, then T2(R)→ 0 and T3(R)→ const. which implies that F (R)→ −(σ−1)η <

0.

• If σ = 1, then T2(R)→ (1−α)η and T3(R)→ 1 which implies that F (R)→ −(1−α)η <

0.

• If σ < 1, T3(R) ∼ (1− α)
(
L̄−R

) η(σ−1)
σ (B1−η)

σ−1
σ as R→ L̄ and

T2(R)

T3(R)
→

(1− α)η
(
L̄−R

) η(σ−1)
σ (B1−η)

σ−1
σ

(1− α)
(
L̄−R

) η(σ−1)
σ (B1−η)

σ−1
σ

= η.
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Thus F (R)→ −ση < 0.

Next, consider the limit of F (R) as R approaches 0. In this case, T1(R) → +∞ and

T2(R)→ const., while the behavior of T3(R) depend on the value of σ > 0.

• If σ ≥ 1, then T3(R)→ const. which implies that F (R)→ +∞.

• If σ < 1, T3(R) ∼ α(φR)
σ−1
σ as R→ 0 and

T1(R)

T3(R)
∼
αφ

σ−1
σ R−

1
σ

(
L̄−R

)
α(φR)

σ−1
σ

=
(L̄−R)

R
→ +∞.

Thus F (R)→ +∞.

By continuity of F (R) on (0, L̄), there exists an R̃ ∈ (0, L̄) such that F (R) ≤ 0 if R ≥ R̃.

To show that the threshold is unique, consider any R̃ that satisfies F (R̃) = 0. That is,

αφ
σ−1
σ (R̃)−

1
σ

(
L̄− R̃

)
− (1− α)η

(
L̄− R̃

) η(σ−1)
σ

(B1−η)
σ−1
σ[

α
(
φR̃
)σ−1

σ
+ (1− α)

(
(L̄− R̃)ηB1−η

)σ−1
σ

] − (σ − 1)η = 0,

which implies

αφ
σ−1
σ (R̃)−

1
σ

(
L̄− R̃

)
− (σ − 1)ηα

(
φR̃
)σ−1

σ − ση(1− α)
(
L̄− R̃

) η(σ−1)
σ

(B1−η)
σ−1
σ = 0

Let

L(R) = αφ
σ−1
σ (R)−

1
σ

(
L̄−R

)
− (σ − 1)ηα (φR)

σ−1
σ − ση(1− α)

(
L̄−R

) η(σ−1)
σ (B1−η)

σ−1
σ

defined for R ∈ (0, L̄), such that L(R̃) = 0. Notice,

L′(R) = αφ
σ−1
σ

(
− 1

σ
R
−1
σ
−1
(
L̄−R

)
−R−

1
σ

)
︸ ︷︷ ︸

<0

+ (−1)(σ − 1)ηαφ
σ−1
σ
σ − 1

σ
R−

1
σ︸ ︷︷ ︸

≤0

+ ση(1− α)
η(σ − 1)

σ

(
L̄−R

) η(σ−1)
σ
−1

(B1−η)
σ−1
σ︸ ︷︷ ︸

≤0 if σ≤1

.

Thus, if σ ≤ 1, L(·) is strictly decreasing and the solution R̃ to L(R̃) is unique. For the case
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σ > 1, notice,

L′′(R) = αφ
σ−1
σ

((
1

σ

)(
1

σ
+ 1

)
R
−1
σ
−2
(
L̄−R

)
+

1

σ
R
−1
σ
−1 +

1

σ
R−

1
σ
−1

)
︸ ︷︷ ︸

>0

+ (σ − 1)ηαφ
σ−1
σ
σ − 1

σ

(
1

σ

)
R−

1
σ
−1︸ ︷︷ ︸

>0

+ (−1)ση(1− α)
η(σ − 1)

σ

(
η(σ − 1)

σ
− 1

)(
L̄−R

) η(σ−1)
σ
−2

(B1−η)
σ−1
σ︸ ︷︷ ︸

>0

> 0.

Further,

lim
R→0+

L(R) =∞,

lim
R→L̄−

L(R) = −(σ − 1)ηα
(
φL̄
)σ−1

σ < 0.

Since L(·) is stricly convex and has a positive and a negative endpoint, it is single crossing,

i.e. R̃ with L(R̃) = 0 is unique for σ > 1.

B.3 Proof of Proposition 2

As argued in the proof of Lemma 1, R̃ is given by the unique solution to

αφ
σ−1
σ (R̃)−

1
σ

(
1− R̃

)
− (σ − 1)ηα

(
φR̃
)σ−1

σ − ση(1− α)
(

1− R̃
) η(σ−1)

σ
(B1−η)

σ−1
σ = 0.

(45)

Let

L(R, σ) = αφ
σ−1
σ (R)−

1
σ (1−R)− (σ − 1)ηα (φR)

σ−1
σ − ση(1− α) (1−R)

η(σ−1)
σ (B1−η)

σ−1
σ .

By the implicit function theorem,

dR̃

dσ
= −

∂L(R̃,σ)
∂σ

∂L(R̃,σ)
∂R

. (46)

I will show that both the numerator and the denominator of (46) are negative.

First recall from the proof of Lemma 1, L(R, σ) is single-crossing in R, with L(R, σ) > 0

for R < R̃, and L(R, σ) < 0 for R > R̃. Thus, the partial derivative ∂L(R, σ)/∂R evaluated
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at R = R̃ is negative.

Next, consider the numerator of (46). This is given by

∂L(R̃, σ)

∂σ
= −(B1−η)

σ−1
σ η(1− R̃)η

σ−1
σ (1− α)− αη(φR̃)

σ−1
σ +

φ
σ−1
σ α ln(φ)(1− R̃)

(R̃)
1
σσ2

− (B1−η)
σ−1
σ η ln(B1−η)(1− R̃)η

σ−1
σ (1− α)

σ
+
φ
σ−1
σ α ln(R̃)(1− R̃)

(R̃)
1
σσ2

− (B1−η)
σ−1
σ η2 ln(1− R̃)(1− R̃)η

σ−1
σ (1− α)

σ
− φ

σ−1
σ R̃αη ln(φR̃)(σ − 1)

σ2(R̃)
1
σ

=
−η(1− α)(1− R̃)η

σ−1
σ (B1−η)

σ−1
σ

(
σ + ln(B1−η) + η ln(1− R̃)

)
σ

+
−σ2αηφ

σ−1
σ R̃ + φ

σ−1
σ α ln(φR̃)(1− R̃)− φσ−1

σ R̃αη ln(φR̃)(σ − 1)

σ2(R̃)
1
σ

The first fraction on the right side is negative since B ≥ exp(−σ/(1− η))(1− R̃)−η/(1−η) by

assumption, which implies σ + ln(B1−η + η ln(1 − R̃)) ≥ 0. As for the second, notice that

(45) implies,

αφ
σ−1
σ (R̃)−

1
σ (1− R̃) = (σ − 1)ηα(φR̃)

σ−1
σ + ση(1− α)(1− R̃)η

σ−1
σ (B1−η)

σ−1
σ︸ ︷︷ ︸

>0

> (σ − 1)ηα(φR̃)
σ−1
σ ,

or equivalently,

φ
σ−1
σ α(1− R̃)− φ

σ−1
σ αη(σ − 1)R̃ > 0.

Thus,

φ
σ−1
σ α ln(φR̃)(1− R̃)− φ

σ−1
σ R̃αη ln(φR̃)(σ − 1) = ln(φR̃)

(
φ
σ−1
σ α(1− R̃)− φ

σ−1
σ αη(σ − 1)R̃

)
< 0,

since φR̃ ≤ 1. By extension,

−σ2αηφ
σ−1
σ R̃ + φ

σ−1
σ α ln(φR̃)(1− R̃)− φ

σ−1
σ R̃αη ln(φR̃)(σ − 1) < 0,

and,

−σ2αηφ
σ−1
σ R̃ + φ

σ−1
σ α ln(φR̃)(1− R̃)− φσ−1

σ R̃αη ln(φR̃)(σ − 1)

σ2(R̃)
1
σ

< 0.

We can conclude that ∂L(R̃, σ)/∂σ < 0. Therefore, dR̃/dσ < 0.
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B.4 Proof of Proposition 3

From (5)-(19), the demand for housing in the home region is

D(ph;ZR) =
∑

k∈{h,f}

(µN,kπh,N,k + µR,kπh,R,k) h̄L
∗
k

=
∑

k∈{h,f}

(πh,N,k + µR,k (πh,R,k − πh,N,k)) h̄L∗k

As E[vwl,t+1] = v̄ by assumption, dπh,r,k/dZR = 0 for all r, k, and

∂D(ph;ZR)

∂ZR
=

∑
k∈{h,f}

(
dµR,k
dZR

(πh,R,k − πh,N,k)
)
h̄L∗k.

Notice that differentiating (3) with respect to ZR evaluated at r′ = R yields,

dµR,k
dZR

=
exp

(
ν−1
r

(
ṽwN,k + ṽwR,k

))
ν−1
r

dṽwR,k
dZR(

exp
(
ν−1
r ṽwN,k

)
+ exp

(
ν−1
r ṽwR,k

))2 > 0,

since

dṽwR,k
dZR

= 1.

Thus, ∂D(ph, ZR)/∂ZR ≥ 0 if πh,R,k − πh,N,k ≥ 0 for all k. From (4), this condition is

equivalent to:

exp
(
ν−1
l
≈
vwh,R,k

)∑
k′∈{h,f} exp

(
ν−1
l
≈
vwk′,R,k

) ≥ exp
(
ν−1
l
≈
vwh,N,k

)∑
k′∈{h,f} exp

(
ν−1
l
≈
vwk′,N,k

) .
Rewriting the above,

exp
(
ν−1l

≈
vwh,R,k

) (
exp

(
ν−1l

≈
vwf,N,k

)
+ exp

(
ν−1l

≈
vwh,N,k

))
≥ exp

(
ν−1l

≈
vwh,N,k

) (
exp

(
ν−1l

≈
vwf,R,k

)
+ exp

(
ν−1l

≈
vwh,R,k

))
⇐⇒ exp

(
ν−1l

≈
vwf,N,k

)
exp

(
ν−1l

≈
vwh,R,k

)
≥ exp

(
ν−1l

≈
vwf,R,k

)
exp

(
ν−1l

≈
vwh,N,k

)
⇐⇒ exp

(
ν−1l

(≈
vwh,R,k −

≈
vwh,N,k

))
≥ exp

(
ν−1l

(≈
vwf,R,k −

≈
vwf,N,k

))
⇐⇒ ≈

vwh,R,k −
≈
vwh,N,k ≥

≈
vwf,R,k −

≈
vwf,N,k

⇐⇒ uh,R,k − uh,N,k ≥ uf,R,k − uf,N,k.
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As consumption associated with non-remote workers in the home region goes to zero, we

have ch,N,k → 0 which implies

uh,N,k =
c1−γ
h,N,k − 1

1− γ
−→ −∞,

for γ ≥ 1, giving uh,R,k − uh,N,k > uf,R,k − uf,N,k for all k.

B.5 Proof of Proposition 4

From equations (5) and (6), and noting that L∗l,t = Nl,t +R∗l,t, we have

dL∗h,1
dZR

=
∑

k∈{h,f}

(
dµR,k,1
dZR

πh,R,K,1 +
dµN,k,1
dZR

πh,N,K,1 + µR,k,1
dπh,R,k,1
dZR

+ µN,k,2
dπh,N,k,1
dZR

)
L∗k,0

=
∑

k∈{h,f}

(
dµR,k,1
dZR

(πh,R,K,1 − πh,N,K,2) + µR,k,1
dπh,R,k,1
dZR

+ µN,k,1
dπh,N,k,1
dZR

)
L∗k,0 (47)

where the second line follows since µR,k,1 + µN,k,1 = 1. Also,

dπh,r,k,1
dZR

=

ν−1
l exp

(
ν−1
l

(≈
vwh,r,k,1 +

≈
vwf,r,k,1

))(d
≈
vwh,r,k,1
dZR

− d
≈
vwf,r,k,1
dZR

)
(
exp

(
ν−1
l
≈
vwh,r,k,1

)
+ exp

(
ν−1
l
≈
vwf,r,k,1

))2

= b̃r,k

(
d
≈
vwh,r,k,1
dZR

−
d
≈
vwf,r,k,1
dZR

)
, (48)

where,

b̃r,k ≡
ν−1
l exp

(
ν−1
l

(≈
vwh,r,k,1 +

≈
vwf,r,k,1

))(
exp

(
ν−1
l
≈
vwh,r,k,1

)
+ exp

(
ν−1
l
≈
vwf,r,k,1

))2 .

Since period 1 prices are assumed fixed, from (63) we have

d
≈
vwl,r,k,1
dZR

= βνr

∑
r′∈{R,N} exp

(
ν−1
r ṽwr′,l,2

)
ν−1
r

dṽw
r′,l,2
dZR∑

r′∈{R,N} exp
(
ν−1
r ṽwr′,l,2

)
= β

∑
r′∈{R,N}

exp
(
ν−1
r ṽwr′,l,2

)∑
r′′∈{R,N} exp

(
ν−1
r ṽwr′′,l,2

) dṽwr′,l,2
dZR

= β
∑

r′∈{R,N}

µr′,l,2
dṽwr′,l,2
dZR

. (49)
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Also, from (62),

dṽwr′,l,2
dZR

=
dZr′

dZR
+ νl

∑
l′∈{h,f} exp

(
ν−1
l
≈
vwl′,r′,l,2

)
ν−1
l

d
≈
vw
l′,r′,l,2
dZR∑

l′∈{h,f} exp
(
ν−1
l
≈
vwl′,r′,l,2

)
=
dZr′

dZR
+
∑

l′∈{h,f}

exp
(
ν−1
l
≈
vwl′,r′,l,2

)∑
l′′∈{h,f} exp

(
ν−1
l
≈
vwl′′,r′,l,2

) d≈vwl′,r′,l,2
dZR

=
dZr′

dZR
+
∑

l′∈{h,f}

πl′,r′,l,2
d
≈
vwl′,r′,l,2
dZR

, (50)

where dZR/dZR = 1 and dZN/dZR = 0. Since E[vwl,2] = v̄,

d
≈
vwl′,r′,l,2
dZR

=
du

dc

∣∣∣∣
c=c(l′,r′,l;ph,2)

∂c(l′, r′, l; ph,2)

∂ph,2

dph,2
dZR

, (51)

where c(l′, r′, l; ph,2) ≡ (1 − τl′)wr′,l′,2 + pl,2h̄(1 − δh) − pl′,2h̄ + Tr′,l′,2. Combining (50) and

(51) gives

dṽwr′,l,2
dZR

=
dZr′

dZR
+
∑

l′∈{h,f}

πl′,r′,l,2
du

dc

∣∣∣∣
c=c(l′,r′,l,2)

∂c(l′, r′, l, 2)

∂ph,2

dph,2
dZR

.

Plugging into (49),

d
≈
vwl,r,k,1
dZR

= β
∑

r′∈{R,N}

µr′,l,2

dZr′
dZR

+
∑

l′∈{h,f}

πl′,r′,l,2
du

dc

∣∣∣∣
c=c(l′,r′,l;ph,2)

∂c(l′, r′, l; ph,2)

∂ph,2

dph,2
dZR


= β

µR,l,2 +
∑

r′∈{R,N}

∑
l′∈{h,f}

µr′,l,2πl′,r′,l,2
du

dc

∣∣∣∣
c=c(l′,r′,l,2)

∂c(l′, r′, l, 2)

∂ph,2

dph,2
dZR

 ,

and from (48),

dπh,r,k,1
dZR

= b̃r,kβ (µR,h,2 − µR,f,2) + b̃r,kβ
∑

r′∈{R,N}

∑
l′∈{h,f}

(
µr′,h,2πl′,r′,h,2

du

dc

∣∣∣∣
c=c(l′,r′,h;ph,2)

∂c(l′, r′, h; ph,2)

∂ph,2

dph,2
dZR

− µr′,f,2πl′,r′,f,2
du

dc

∣∣∣∣
c=c(l′,r′,f ;ph,2)

∂c(l′, r′, f ; ph,2)

∂ph,2

dph,2
dZR

)

= ar,k + br,k
∑

r′∈{R,N}

∑
l′∈{h,f}

(
µr′,h,2πl′,r′,h,2

du

dc

∣∣∣∣
c=c(l′,r′,h;ph,2)

∂c(l′, r′, h; ph,2)

∂ph,2

dph,2
dZR

−µr′,f,2πl′,r′,f,2
du

dc

∣∣∣∣
c=c(l′,r′,f ;ph,2)

∂c(l′, r′, f ; ph,2)

∂ph,2

dph,2
dZR

)
.
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where,

ar,k = b̃r,kβ (µR,h,2 − µR,f,2) ,

br,k = b̃r,kβ.

Finally,

∑
r∈{R,N}

µr,k,1
dπh,r,k,1
dZR

=
∑

r∈{R,N}

µr,k,1

ar,k + br,k
∑

r′∈{R,N}

∑
l′∈{h,f}

(µr′,h,2πl′,r′,h,2

du

dc

∣∣∣∣
c=c(l′,r′,h;ph,2)

∂c(l′, r′, h; ph,2)

∂ph,2

dph,2
dZR

− µr′,f,2πl′,r′,f,2
du

dc

∣∣∣∣
c=c(l′,r′,f ;ph,2)

∂c(l′, r′, f ; ph,2)

∂ph,2

dph,2
dZR

))

= ak + bk
∑

r′∈{R,N}

∑
l′∈{h,f}

(
µr′,h,2πl′,r′,h,2

du

dc

∣∣∣∣
c=c(l′,r′,h;ph,2)

∂c(l′, r′, h; ph,2)

∂ph,2

dph,2
dZR

−µr′,f,2πl′,r′,f,2
du

dc

∣∣∣∣
c=c(l′,r′,f ;ph,2)

∂c(l′, r′, f ; ph,2)

∂ph,2

dph,2
dZR

)
,

with

ak =
∑

r∈{R,N}

µr,k,1ar,k,

bk =
∑

r∈{R,N}

µr,k,1br,k,

which, when combined with (47), gives (30).

C Owners’ Problem

The owner’s FOC is

(col,t)
−γql,t = β(col,t+1)−γ

(
rl,t+1 + ql,t+1(1− δb)

)
.

Since ql,t > 0, the development firm’s FOC implies positive production of office space Y B
l,t >

0.69 Office market clearing then implies xl,t > 0 for all t.
Denote by sl,t > 0 the savings rate, col,t = (1− sl,t)rl,tbl,t. Then, bl,t+1 = (sl,trl,tbl,t)/ql,t +

(1− δb)bl,t. Also, let z∗ denote the steady-state value of a variable z. Suppose the economy
reaches a steady-state in period T , i.e. xl,t = x∗l and bl,t+1 = bl,t = b∗l for t ≥ T . Then

69To see ql,t > 0 must hold, consider the case ql,t = 0. The owner’s problem implies optimal investment
xl,t =∞ for rl,t+1 > 0. Thus, ql,t > 0.

56



(dropping the l subscripts for convenience),

qT−1((1− sT−1)rT−1bT−1)−γ = β((1− s∗)r∗)−γ
(
bT−1(sT−1rT−1 + qT−1(1− δb))

qT−1

)−γ
(r∗ + q∗(1− δb))

= β(r∗ − δbq∗)−γ
(
bT−1(sT−1rT−1 + qT−1(1− δb))

qT−1

)−γ
(r∗ + q∗(1− δb)),

where the second line follows since, in steady-state, investment just covers deprecation,

s∗r∗/q∗ = δb. Thus,

sT−1 =

(
β(r∗+q∗(1−δb))

qT−1

)1/γ

− (r∗ − δbq∗) (1−δb)
rT−1(

β(r∗+q∗(1−δb))
qT−1

)1/γ

+ (r∗ − δbq∗) 1
qT−1

.

Proceeding backwards, for t < T − 1, we have

st =

(
β(rt+1+qt+1(1−δb))

qt

)1/γ

− (1− st+1) rt+1(1−δb)
rt(

β(rt+1+qt+1(1−δb))
qt

)1/γ

+ (1− st+1) rt+1

qt

.

C.1 Office Conversion

Consider the case where the owner can convert commercial office space into residential. The

owner’s FOC is

(col,t)
−γql,t = β

[
(col,t+1)−γ

(
rl,t+1 + ql,t+1(1− δb)

)
+ µl,t+1ϕ

]
,

where µl,t is the mulitplier on the upper bound conversion constraint. Since ql,t > 0, the

development firm’s FOC implies positive production of office space Y B
l,t > 0.70 Office market

clearing then implies xl,t > 0 for all t.
Define sl,t > 0 such that ql,txl,t = sl,trl,t(bl,t − al,t) and col,t = (1 − sl,t)rl,t(bl,t − al,t) +

(ψlpl,t − z)al,t. Then, bl,t+1 = (sl,trl,t(bl,t − al,t))/ql,t + (1− δb)(bl,t − al,t). Also, let z∗ denote
the steady-state value of a variable z. Suppose the economy reaches a steady-state in period
T , i.e. xl,t = x∗l and bl,t+1 = bl,t = b∗l for t ≥ T . Then (dropping the l subscripts for

70To see ql,t > 0 must hold, consider the case ql,t = 0. The owner’s problem implies optimal investment
xl,t =∞ for rl,t+1 > 0. Thus, ql,t > 0.
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convenience),

qT−1((1− sT−1)rT−1(bT−1 − aT−1) + (ψpT−1 − z)aT−1)−γ

= β
(
((1− s∗)r∗(b∗ − a∗) + (ψp∗ − z)a∗)−γ(r∗ + q∗(1− δb)) + µ∗ϕ

)
= β

((
(1− s∗)r∗

(
(bT−1 − aT−1)(sT−1rT−1 + qT−1(1− δb))

qT−1
− a∗

)
+ (ψp∗ − z)a∗

)−γ
(r∗ + q∗(1− δb)) + µ∗ϕ

)

= β

(((
r∗ − q∗

(
a∗

b∗ − a∗
+ δb

))(
(bT−1 − aT−1)(sT−1rT−1 + qT−1(1− δb))

qT−1
− a∗

)
+ (ψp∗ − z)a∗

)−γ
(r∗ + q∗(1− δb)) + µ∗ϕ

)
.

In the case that µ∗ = 0,

sT−1 =

[(
β(r∗ + q∗(1− δb))

qT−1

)1/γ

(rT−1(bT−1 − aT−1) + (ψpT−1 − z)aT−1)−
(
r∗ − q∗

(
a∗

b∗ − a∗
+ δb

))
(
(bT−1 − aT−1)(1− δb)− a∗

)
− (ψp∗ − z)a∗

] [(
r∗ − q∗

(
a∗

b∗ − a∗
+ δb

))(
(bT−1 − aT−1)rT−1

qT−1

)

+

(
β(r∗ + q∗(1− δb))

qT−1

)1/γ

rT−1(bT−1 − aT−1)

]−1

Proceeding backwards, for t < T − 1, we have

qt((1− st)rt(bt − at) + (ψpt − z)at)−γ =

β

((
(1− st+1)rt+1

(
(bt − at)(strt + qt(1− δb))

qt
− at+1

)
+ (ψpt+1 − z)at+1

)−γ
(rt+1 + qt+1(1− δb)) + µt+1ϕ

)
.

When µt+1 = 0,

st =

[(
β(rt+1 + qt+1(1− δb))

qt

)1/γ

(rt(bt − at) + (ψpt − z)at)− (1− st+1)rt+1

(
(bt − at)(1− δb)− at+1

)
− (ψpt+1 − z)at+1

] [
(1− st+1)rt+1

(
(bt − at)rt

qt

)

+

(
β(rt+1 + qt+1(1− δb))

qt

)1/γ

rt(bt − at)

]−1
.
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D Firms’ First Order Conditions

The firms FOCs yield the following pricing equations:

wR,t = ACl

[
αl (φRl,t)

σ−1
σ + (1− αl)

(
(Nl,t)

η B1−η
l,t

)σ−1
σ

] 1
σ−1

αlφ
σ−1
σ (Rl,t)

− 1
σ (52)

wN,l,t = ACl

[
αl (φRl,t)

σ−1
σ + (1− αl)

(
(Nl,t)

η B1−η
l,t

)σ−1
σ

] 1
σ−1

(1− αl)B
(σ−1)(1−η)

σ
l,t η (Nl,t)

(σ−1)η−σ
σ ,

(53)

rl,t = ACl

[
αl (φRl,t)

σ−1
σ + (1− αl)

(
(Nl,t)

η B1−η
l,t

)σ−1
σ

] 1
σ−1

(1− αl) (Nl,t)
(σ−1)η
σ (1− η)B

(σ−1)(1−η)−σ
σ

l,t ,

(54)

pl,t =
1

AHl ρ
H
l

(
MH

l,t

)ρHl −1 (
PH
l,t

)1−ρHl
, (55)

ql,t =
1

ABl ρ
B
l

(
MB

l,t

)ρBl −1 (
PB
l,t

)1−ρBl
, (56)

E Gumbel trick

Define

ṽwr,l,t ≡ Eε

[
vwr,l,t

]
+ Zr. (57)

Also, let

µs,l,t ≡
exp

(
ν−1
r ṽws,l,t

)
exp

(
ν−1
r ṽwN,l,t

)
+ exp

(
ν−1
r ṽwR,l,t

) . (58)

I will show that this is the expression defines the share of agents living in l who choose

remote status s conditional on the aggregate state S.

Pr (r = s|l,St) = Pr
(
s = arg max

r′
{ṽwr′,l,t + ζr′}

)
(59)

= µs,l,t,

where ζr′ is the realization of the preference shock corresponding to remote status r′.

First note that the PDF and CDF for the Gumbel distribution with location parameter

µ and shape parameter ψ are

f(x;µ, ψ) = ψ−1 exp
(
ψ−1(µ− x)− exp

(
ψ−1(µ− x)

))
,

F (x;µ, ψ) = exp
(
− exp

(
ψ−1(µ− x)

))
.

Then, supressing the dependence on l and t in what follows for clarity, the probability that
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an individual chooses remote status s is71

Pr (r = s) = E
[
Pr
(
ṽwy + ζy ≤ ṽws + ζs ∀y 6= s

)]
= E

[∏
y 6=s

Pr
(
ṽwy + ζy ≤ ṽws + ζs

)]

=

∫ ∞
−∞

f(m; ṽws , νr)
∏
y 6=s

Pr
(
ṽwy + ζy ≤ m

)
dm

=

∫ ∞
−∞

f(m; ṽws , νr)
∏
y 6=s

exp
(
− exp

(
ν−1
r (ṽwy −m)

))
dm

=

∫ ∞
−∞

f(m; ṽws , νr) exp

(
−
∑
y 6=s

exp
(
ν−1
r (ṽwy −m)

))
dm

=

∫ ∞
−∞

ν−1
r exp

(
ν−1
r (ṽws −m)− exp

(
ν−1
r (ṽws −m)

))
exp

(
−
∑
y 6=s

exp
(
ν−1
r (ṽwy −m)

))
dm

=

∫ ∞
−∞

ν−1
r exp

(
ν−1
r (ṽws −m)

)
exp

(
−
∑
y

exp
(
ν−1
r (ṽwy −m)

))
dm

=

∫ ∞
−∞

ν−1
r exp

(
ν−1
r ṽws

)
exp

(
−ν−1

r m
)

exp

(
− exp

(
−ν−1

r m
)∑

y

exp
(
ν−1
r ṽwy

))
dm,

where the expectation is taken with respect to ṽws + ζs and the second line follows by inde-

pendence. Note that exp (ν−1
r ṽws ) = µs

∑
y exp

(
ν−1
r ṽwy

)
by definition. Thus,

Pr (r = s) = ν−1
r µs

∑
y

exp
(
ν−1
r ṽwy

) ∫ ∞
−∞

exp
(
−ν−1

r m
)

exp

(
− exp

(
−ν−1

r m
)∑

y

exp
(
ν−1
r ṽwy

))
dm

= ν−1
r µs

[∑
y

exp
(
ν−1
r ṽwy

)] 1

ν−1
r

∑
y exp

(
ν−1
r ṽwy

)
= µs,

where the second equality follows because, for a, b ∈ R,
∫

exp(−ax) exp(−b exp(−ax))dx =
1
ab

. Thus, by a law of large numbers, we can conclude that µs,l,t is the share of agents living

71I prove the equality in 59 for the general case where the choice set r ∈ R satisfies |R| ≥ 2.
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in l who choose remote status s.

In a similar way, it can be shown that conditional on choosing remote status r, the share

of agents choosing new location k is

πk,r,l,t =
exp

(
ν−1
l
≈
vwk,r,l,t

)∑
k′∈Γ(r,l) exp

(
ν−1
l
≈
vwk′,r,l,t

) , (60)

where
≈
vwk,r,l,t ≡ u(c) + βE[vwk,t+1] +Xk −ml,k, (61)

subject to the constraints in 2.

Note also that integrating with respect to the shocks’s gives

ṽwr,l,t = Zr + Eε

[
vwr,l,t

]
(62)

= Zr + νl ln

 ∑
k∈Γ(r,l)

exp
(
ν−1
l
≈
vwk,r,l,t

)+ νlγEM

and

E[vwk,t+1] = νr ln

 ∑
r′∈{R,N}

exp
(
ν−1
r ṽwr′,k,t+1

)+ νrγEM , (63)

where γEM is the Euler-Mascheroni Constant. To see this, note that the CDF of vwr,l,t =

maxk∈Γ(r,l){εk +
≈
vwk,r,l,t} is (again suppressing l, t),

F (x) = Pr

(
max
k∈Γ(r,l)

{εk +
≈
vwk,r} ≤ x

)
(64)

=
∏

k∈Γ(r,l)

Pr
(
εk +

≈
vwk,r ≤ x

)
(65)

=
∏

k∈Γ(r,l)

exp
(
− exp

(
ν−1
l (

≈
vwk,r − x)

))
(66)

= exp

− ∑
k∈Γ(r,l)

exp
(
ν−1
l (

≈
vwk,r − x)

) (67)

= exp

− exp(−ν−1
l x)

∑
k∈Γ(r,l)

exp
(
ν−1
l
≈
vwk,r
) , (68)
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and the corresponding PDF is

f(x) = ν−1
l exp

(
−ν−1

l x
) ∑

k∈Γ(r,l)

exp
(
ν−1
l
≈
vwk,r
) (69)

exp

− exp(−ν−1
l x)

∑
k∈Γ(r,l)

exp
(
ν−1
l
≈
vwk,r
) .

Thus,

Eε [vwr ] =

∫ ∞
−∞

xf(x)dx (70)

=

∫ 0

∞
−νl ln

(
y∑

k∈Γ(r,l) exp
(
ν−1
l
≈
vwk,r
)) ν−1

l y exp (−y) (−νl/y)dy

= νl

∫ ∞
0

− ln

(
y∑

k∈Γ(r,l) exp
(
ν−1
l
≈
vwk,r
)) exp (−y) dy

= νl

∫ ∞
0

ln

 ∑
k∈Γ(r,l)

exp
(
ν−1
l
≈
vwk,r
) exp(−y)dy + νl

∫ ∞
0

− ln(y) exp(−y)dy

= νl ln

 ∑
k∈Γ(r,l)

exp
(
ν−1
l
≈
vwk,r
)+ νlγEM , (71)

where the second line follows from the substitution y = exp
(
−ν−1

l x
)∑

k∈Γ(r,l) exp
(
ν−1
l
≈
vwk,r
)

with dy = −ν−1
l dx exp

(
−ν−1

l x
)∑

k∈Γ(r,l) exp
(
ν−1
l
≈
vwk,r
)

= −ν−1
l dxy, limx→∞ y = 0, and

limx→−∞ y =∞.

The proof for 63 follows similarly.
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F Dynamic Exact-Hat Algebra

Let ẋt+1 ≡ xt+1/xt denote the change in a variable x. Assume constant fundamentals. Notice

π̇k,r,l,t+1 =
exp

(
ν−1
l
≈
vwk,r,l,t+1

)
exp

(
ν−1
l
≈
vwk,r,l,t

) · ∑k′∈Γ(r,l) exp
(
ν−1
l
≈
vwk′,r,l,t

)∑
k′′∈Γ(r,l) exp

(
ν−1
l
≈
vwk′′,r,l,t+1

)
=

exp
(≈
vwk,r,l,t+1 −

≈
vwk,r,l,t

)1/νl∑
k′′∈Γ(r,l)

(∑
k′∈Γ(r,l) exp

(
ν−1
l
≈
vwk′,r,l,t

))−1

exp
(
ν−1
l
≈
vwk′′,r,l,t+1

)
=

exp
(≈
vwk,r,l,t+1 −

≈
vwk,r,l,t

)1/νl∑
k′′∈Γ(r,l) πk′′,r,l,t exp

(≈
vwk′′,r,l,t+1 −

≈
vwk′′,r,l,t

)1/νl

=

(
≈̇
vwk,r,l,t+1

)1/νl

∑
k′′∈Γ(r,l) πk′′,r,l,t

(
≈̇
vwk′′,r,l,t+1

)1/νl
.

where, with a slight abuse of notation,
≈̇
vwk,r,l,t+1 ≡ exp(

≈
vwk,r,l,t+1 −

≈
vwk,r,l,t). Likewise,

µ̇r,l,t+1 =
exp

(
ν−1
r ṽwr,l,t+1

)
exp

(
ν−1
r ṽwr,l,t

) · ∑r′ exp
(
ν−1
r ṽwr′,l,t

)∑
r′′ exp

(
ν−1
r ṽwr′′,l,t+1

)
=

exp
(
ṽwr,l,t+1 − ṽwr,l,t

)1/νr∑
r′′ µr′′,l,t exp

(
ṽwr′′,l,t+1 − ṽwr′′,l,t

)1/νr

=

(
˙̃vwr,l,t+1

)1/νr∑
r′′ µr′′,l,t

(
˙̃vwr′′,l,t+1

)1/νr
.

where ˙̃vwr,l,t+1 ≡ exp(ṽwr,l,t+1 − ṽwr,l,t). Notice,

˙̃vwr,l,t+1 =

(∑
l′′∈Γ(r,l) exp

(
ν−1
l
≈
vwl′′,r,l,t+1

)∑
l′∈Γ(r,l) exp

(
ν−1
l
≈
vwl′,r,l,t

) )νl

exp (Zr,t+1 − Zr,t)

=

 ∑
l′′∈Γ(r,l)

πl′′,r,l,t exp
(≈
vwl′′,r,l,t+1 −

≈
vwl′′,r,l,t

)1/νl

νl

exp (Zr,t+1 − Zr,t)

=

 ∑
l′′∈Γ(r,l)

πl′′,r,l,t

(
≈̇
vwl′′,r,l,t+1

)1/νl

νl

exp (Zr,t+1 − Zr,t) .
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Thus,

µ̇r,l,t+1 =

(
˙̃vwr,l,t+1

)1/νr∑
r′′ µr′′,l,t

(
˙̃vwr′′,l,t+1

)1/νr

=

 ∑
l′∈Γ(r,l)

πl′,r,l,t

(
≈̇
vwl′,r,l,t+1

)1/νl

νl/νr

exp (Zr,t+1 − Zr,t)1/νr

∑
r′′

µr′′,l,t

 ∑
l′′∈Γ(r′′,l)

πl′′,r′′,l,t

(
≈̇
vwl′′,r′′,l,t+1

)1/νl

νl/νr

exp (Zr′′,t+1 − Zr′′,t)1/νr


−1

Also,

≈̇
vwk,r,l,t+1 = exp

(
uk,r,l,t+1 + βEt+1[vwk,t+2]− uk,r,l,t − βEt[vwk,t+1]

)
= exp (uk,r,l,t+1 − uk,r,l,t) exp

(
Et+1[vwk,t+2]− Et[vwk,t+1]

)β
= exp (uk,r,l,t+1 − uk,r,l,t)

(∑
r′′ exp

(
ν−1
r ṽwr′′,k,t+2

)∑
r′ exp

(
ν−1
r ṽwr′,k,t+1

) )βνr

= exp (uk,r,l,t+1 − uk,r,l,t)

(∑
r′′

µr′′,k,t+1 exp
(
ṽwr′′,k,t+2 − ṽwr′′,k,t+1

)1/νr

)βνr

= exp (uk,r,l,t+1 − uk,r,l,t)

(∑
r′′

µr′′,k,t+1

(
˙̃vwr′′,k,t+2

)1/νr

)βνr

= exp (uk,r,l,t+1 − uk,r,l,t)

∑
r′′

µr′′,k,t+1

 ∑
l′′∈Γ(r′′,k)

πl′′,r′′,k,t+1

(
≈̇
vwl′′,r′′,k,t+2

)1/νl

νl/νr

exp (Zr′′,t+2 − Zr′′,t+1)1/νr
)βνr

.

F.1 Remote Shock

Suppose in period t = t∗ > 0, the economy is hit with an exogenous shock to the remote

amenity Zr,t∗ . Agents learn about the shock and the future path of Zr,t in period t∗ −
1. I compare the baseline economy which experiences the remote shock, to a no-shock

economy with constant fundamentals. Define Zr,t+1 ≡ Zbaseline
r,t+1 − Zbaseline

r,t the change in

remote amenities under the remote shock regime. Let {≈̇vw,no shockk,r,l,t }Tt=1 denote the path in
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the absence of the remote shock, while {≈̇vw,baselinek,r,l,t }Tt=1 is the path under the remote shock.

Notice,
≈̇
vw,baselinek,r,l,t =

≈̇
vw,no shockk,r,l,t for t < t∗ − 1. Define x̂t+1 ≡ ẋbaselinet+1 /ẋno shockt+1 the relative

change between the remote-shock economy and the economy with constant fundamentals for

variable x. Then,

π̇baselinek,r,l,t+1

π̇no shockk,r,l,t+1

=

(≈̇
vw,baselinek,r,l,t+1

)1/νl

(≈̇
vw,no shockk,r,l,t+1

)1/νl

∑
k′′∈Γ(r,l) π

baseline
k′′,r,l,t

(≈̇
vbaseline
k′′,r,l,t+1

)1/νl

∑
k′∈Γ(r,l) π

no shock
k′,r,l,t

(≈̇
vno shock
k′,r,l,t+1

)1/νl

which implies

π̂k,r,l,t+1 =

(
≈̂
vwk,r,l,t+1

)1/νl

∑
k′′∈Γ(r,l)

πbaseline
k′′,r,l,t

(≈̇
vw,baseline
k′′,r,l,t+1

)1/νl

∑
k′∈Γ(r,l) π

no shock
k′,r,l,t

(≈̇
vw,no shock
k′,r,l,t+1

)1/νl

=

(
≈̂
vwk,r,l,t+1

)1/νl

∑
k′′∈Γ(r,l)

πbaseline
k′′,r,l,t

(
≈̂
vw
k′′,r,l,t+1

)1/νl

∑
k′∈Γ(r,l) π

no shock
k′,r,l,t

(≈̇
vw,no shock
k′,r,l,t+1

)1/νl

(
≈̇
vw,no shockk′′,r,l,t+1

)1/νl

. (72)

Likewise,

µ̂r,l,t+1 =

(
ˆ̃vwr,l,t+1

)1/νr

∑
r′′

µbaseline
r′′,l,t

(
ˆ̃vw
r′′,l,t+1

)1/νr

∑
r′ µ

no shock
r′,l,t

(
˙̃vw,no shock
r′,l,t+1

)1/νr

(
˙̃vw,no shockr′′,l,t+1

)1/νr
, (73)

where,

ˆ̃vwr,l,t+1 = exp(Zr,t+1)


∑

l′′∈Γ(r,l) π
baseline
l′′,r,l,t

(
≈̇
vw,baselinel′′,r,l,t+1

)1/νl

∑
l′∈Γ(r,l) π

no shock
l′,r,l,t

(
≈̇
vw,no shockl′,r,l,t+1

)1/νl


νl

= exp(Zr,t+1)

 ∑
l′′∈Γ(r,l)

πbaselinel′′,r,l,t

(
≈̂
vwl′′,r,l,t+1

)1/νl

∑
l′∈Γ(r,l) π

no shock
l′,r,l,t

(
≈̇
vw,no shockl′,r,l,t+1

)1/νl

(
≈̇
vw,no shockl′′,r,l,t+1

)1/νl


νl
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Furthermore,

≈̂
vwk,r,l,t+1 =

exp
(
ubaselinek,r,l,t+1 − ubaselinek,r,l,t

)
exp

(
uno shockk,r,l,t+1 − uno shockk,r,l,t

)
(∑

r′′ µ
baseline
r′′,k,t+1

(
˙̃vw,baseliner′′,k,t+2

)1/νr
)βνr

(∑
r′ µ

no shock
r′,k,t+1

(
˙̃vw,no shockr′,k,t+2

)1/νr
)βνr

=
exp

(
ubaselinek,r,l,t+1 − ubaselinek,r,l,t

)
exp

(
uno shockk,r,l,t+1 − uno shockk,r,l,t

)
∑

r′′

µbaseliner′′,k,t+1

(
˙̃vw,baseliner′′,k,t+2

)1/νr

∑
r′ µ

no shock
r′,k,t+1

(
˙̃vw,no shockr′,k,t+2

)1/νr


βνr

=
exp

(
ubaselinek,r,l,t+1 − ubaselinek,r,l,t

)
exp

(
uno shockk,r,l,t+1 − uno shockk,r,l,t

)
∑

r′′

µbaseliner′′,k,t+1

(
ˆ̃vwr′′,k,t+2

)1/νr

∑
r′ µ

no shock
r′,k,t+1

(
˙̃vw,no shockr′,k,t+2

)1/νr

(
˙̃vw,no shockr′′,k,t+2

)1/νr


βνr
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G Welfare

G.1 Workers

Let V w
l,t ≡ E[vwl,t]. This can be viewed as the expected value of living in l before realization

of the preference shocks, or the average value of agents living in l. Then,

V w
l,t = νr ln

 ∑
j∈{R,N}

exp
(
ν−1
r ṽwj,l,t

)+ νrγEM

= νr ln

(
exp

(
ν−1
r ṽwr′,l,t

)
µr′,l,t

)
+ νrγEM

= ṽwr′,l,t − νr ln (µr′,l,t) + νrγEM

= νl ln

 ∑
k∈Γ(r′,l)

exp
(
ν−1
l
≈
vwk,r′,l,t

)+ Zr′,t − νr ln (µr′,l,t) + νrγEM + νlγEM

=
≈
vwl′,r′,l,t + Zr′,t − νr ln (µr′,l,t)− νl ln (πl′,r′,l,t) + νrγEM + νlγEM

= ul′,r′,l,t +Xl′ −ml,l′ + βVl′,t+1 + Zr′,t − νr ln (µr′,l,t)− νl ln (πl′,r′,l,t) + νrγEM + νlγEM ,

which holds for all l′, r′. Take l′ = l. Then, we have

V w
l,t =

∞∑
s=0

βs (ul,r,l,t+s +Xl −ml,l + Zr,t+s − νr ln (µr,l,t+s)− νl ln (πl,r,l,t+s) + (νr + νl)γEM) .

66



Next, consider the change in worker welfare between a baseline and a counterfactual
economy, V wC

l,t − V wB
l,t . Let δwl,r,t be defined as the change in lifetime consumption (beginning

in t) under the baseline economy such that welfare in the baseline is equal to that under the
counterfactual:

V wCl,t =

∞∑
s=0

βs


(
cwCl,r,l,t+s

)1−γ
− 1

1− γ
+XC

l −mC
l,l + ZCr,t+s − νr ln

(
µCr,l,t+s

)
− νl ln

(
πCl,r,l,t+s

)
+ (νr + νl)γEM


=

∞∑
s=0

βs


(

(1 + δwl,r,t)c
wB
l,r,l,t+s

)1−γ
− 1

1− γ
+XB

l −mB
l,l + ZBr,t+s − νr ln

(
µBr,l,t+s

)
− νl ln

(
πBl,r,l,t+s

)
+ (νr + νl)γEM

 .

Then,

1 + δwl,r,t =

 ∞∑
s=0

βs


(
cwCl,r,l,t+s

)1−γ
1− γ

+XC
l −XB

l −mC
l,l +mB

l,l + ZCr,t+s − ZBr,t+s + νr ln

(
µBr,l,t+s
µCr,l,t+s

)

+νl ln

(
πBl,r,l,t+s
πCl,r,l,t+s

))]1/(1−γ) ∞∑
s′=0

βs
′

(
cwBl,r,l,t+s′

)1−γ
1− γ


−1/(1−γ)

.

In the special case where XC
l = XB

l , mC
l,l = mB

l,l, and ZC
r,t+s − ZB

r,t+s, we have

1 + δwl,r,t =


∑∞
s=0 β

s

(
(cwCl,r,l,t+s)

1−γ

1−γ − ln

(
(µCr,l,t+s)

νr (πCl,r,l,t+s)
νl

(µBr,l,t+s)
νr (πBl,r,l,t+s)

νl

))
∑∞
s′=0 β

s′

(
cwB
l,r,l,t+s′

)1−γ

1−γ


1/(1−γ)

.

That is, the change in welfare consists of a term that depends on consumption under both

economies, as well as a term that depend on the option value of staying in region l with work

status r. Notice that, while V wC
l,t , V wB

l,t depend only on region l and period t, δwl,r,t depends

additionally on remote status r since consumption of remote workers will generally differ

from that of non-remote. To provide a region-level measure of welfare, I take the weighted

average across work modes,

δwl,t ≡
δwl,R,tR

∗
l,t + δwl,N,tN

∗
l,t

L∗l,t
.

I use δwl,t∗−1 as my measure of worker welfare, where a value δwl,t∗−1 > 0 indicates a welfare

gain under the counterfactual relative to the baseline economy.
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G.2 Owners

Given bt, the lifetime value of the owner is

vol,t =
∞∑
s=0

βs
(co∗l,s)

1−γ − 1

1− γ
,

where co∗l,s denotes the owner’s optimal consumption, subject to their budget constraint and

the law of motion for office capital. Consider the change in owner welfare between a baseline

and a counterfactual economy, voCl,t − voBl,t . Let δol,t be defined as the change in lifetime

consumption (beginning in t) under the baseline economy such that welfare in the baseline

is equal to that under the counterfactual.

voCl,t =
∞∑
s=0

βs
(co∗Cl,s )1−γ − 1

1− γ

=
∞∑
s=0

βs
((1 + δol,t)c

o∗B
l,s )1−γ − 1

1− γ
.

Then,

1 + δol,t =

 ∑∞
s=0 β

s (co∗Cl,s )1−γ

1−γ∑∞
s′=0 β

s′
(co∗B
l,s′ )1−γ

1−γ

1/(1−γ)

.

I use δol,t as my measure of owner welfare, where a value δol,t > 0 indicates a welfare gain

under the counterfactual relative to the baseline economy.

H Solution Algorithm

Algorithm 1: Solving the sequential equilibrium with constant fundamentals

1. Guess a sequence of changes in utility {≈̇vwk,r,l,t+1}T−1
t=0 and a path of savings rates

{sl,t}Tt=−1 for a large T (in the steady state, we have
≈̇
vwk,r,l,t+1 = 1 for t ≥ T .).72

2. For each t ∈ {0, ..., T}:
72I assume the economy reaches steady state in model-year 2100.
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(i) Construct the distribution of labor across regions and work modes:

Nl,t =
L∑
k=1

µN,k,tπl,N,k,tL
∗
k,t−1,

R∗l,t =
L∑
k=1

µR,k,tπl,R,k,tL
∗
k,t−1,

Rt =
L∑
k=1

µR,k,tL
∗
k,t−1,

Rl,t = f(Rt)

L∗l,t = Nl,t +R∗l,t,

where f(·) returns the unique distribution of remote labor that equalizes remote

wages.

(ii) Compute the stock of buildings,

Bl,t =
Bl,t−1

(
sl,t−1rl,t−1 + ql,t−1(1− δb)

)
ql,t−1

(iii) Compute wages and the rental rate of office space wR,t, wN,l,t, rl,t from the firms’

FOCs.

(iv) Compute home prices pl,t from

pl,t =
1

AHl ρ
H
l M

ρHl −1

t,l

,

where,

Ml,t =

(
L∗t,lh̄− L∗t−1,l(1− δh)h̄

AHl

)1/ρHl

(v) Compute the price of new office space ql,t = q̇l,tql,t−1, where q̇l,t is given by

q̇l,t =
(
ṡl,tṙl,tḂl,t

)1−ρBl
.
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To see this, note that from the office construction firm’s FOCs,

q̇l,t =
ql,t
ql,t−1

=
ABl ρ

B
l

(
MB

l,t−1

)ρBl −1 (
PB
l

)1−ρBl

ABl ρ
B
l

(
MB

l,t

)ρBl −1
(PB

l )
1−ρBl

=
(
ṀB

l,t

)1−ρBl
,

and, since investment in new office space equals production of office space in each

period,

sl,trl,tBl,t

ql,t
= ABl

(
MB

l,t

)ρBl (PB
l

)1−ρBl

=⇒ ṀB
l,t =

(
ṡl,tṙl,tḂl,t

q̇l,t

)1/ρBl

.

(vi) Compute flow utility uk,r,l,t ≡ u(ck,r,l,t) associated with each choice of residence k

and remote status r, given initial residence l.73

(vii) Compute πk,r,l,t+1 = π̇k,r,l,t+1πk,r,l,t and µr,l,t+1 = µ̇r,l,t+1µr,l,t where

π̇k,r,l,t+1 =

(
≈̇
vwk,1,l,t+1

)1/νl

∑L
k′=1 πk′,r,l,t

(
≈̇
vwk′,1,l,t+1

)1/νl
,

µ̇r,l,t+1 =

(
˙̃vwr,l,t+1

)1/νr∑
(r′) µr′,l,t

(
˙̃vwr′,l,t+1

)1/νr
,

and

˙̃vwr,l,t+1 =

(∑
k

πk,r,l,t

(
≈̇
vwk,r,l,t+1

)1/νl

)νl

exp
(
Ẑt+1

)
3. Proceeding backwards from t = T − 1 to t = 0, solve for the changes in utility

≈̇
vwk,r,l,t+1

73The properties of the Gumbel distribution imply that µr,l,t, πk,r,l,t > 0 for all feasible k, r. However,
from the workers budget constraint (2), it is possible that ck,r,l,t < 0 for some k ∈ Γ(r, l). Thus, I set
ck,r,l,t = max{cBCk,r,l,t, 0.01× ((1− τk)wr,k,t + Tr,k,t)}, where cBCk,r,l,t is consumption implied by (2).
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according to:

≈̇
vwk,r,l,t+1 = exp (uk,r,l,t+1 − uk,r,l,t)

∑
r′

µr′,k,t+1

(∑
l′

πl′,r′,k,t+1

(
≈̇
vl′,r′,k,t+2

)1/νl

)νl/νr
βνr

,

4. Set sl,T = (δbql,T )/rl,T . Proceeding backwards from t = T − 1 to t = −1, solve for the

savings rates sl,t according to:

sl,t =

(
β(rl,t+1+ql,t+1(1−δb))

ql,t

)1/γ

− (1− sl,t+1)
rl,t+1(1−δb)

rl,t(
β(rl,t+1+ql,t+1(1−δb))

ql,t

)1/γ

+ (1− sl,t+1)
rl,t+1

ql,t

. (75)

5. Use the constructed sequences to update the guesses for {≈̇vwk,r,l,t+1}T−1
t=0 and {sl,t}Tt=−1

in step 1.

6. Repeat steps 1-5 until convergence.

Algorithm 2: Solving the sequential equilibrium under the remote shock

1. Guess a sequence {≈̂vwk,r,l,t}Tt=t∗−1 and {sl,t}Tt=t∗−1

2. For each t ∈ {t∗ − 1, ..., T}:

(i) Compute πbaselinek,r,l,t and µbaseliner,l,t implied by (72) and (73) and where πbaselinek,r,l,t∗−2 =

πno shockk,r,l,t∗−2 and µbaseliner,l,t∗−2 = µno shockr,l,t∗−2

(ii) Construct the distribution of labor across regions and work modes:

Nl,t =
L∑
k=1

µbaselineN,k,t πbaselinel,N,k,t L
∗
k,t−1,

R∗l,t =
L∑
k=1

µbaselineR,k,t πbaselinel,R,k,t L
∗
k,t−1,

Rt =
L∑
k=1

µbaselineR,k,t L∗k,t−1,

Rl,t = f(Rt)

L∗l,t = Nl,t +R∗l,t,

where f(·) returns the unique distribution of remote labor that equalizes remote

wages.
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(iii) Compute the stock of buildings,

Bl,t =
Bl,t−1

(
sl,t−1rl,t−1 + ql,t−1(1− δb)

)
ql,t−1

(iv) Compute wages and the rental rate of office space wR,t, wN,l,t, rl,t from the firms’

FOCs.

(v) Compute home prices pl,t from

pl,t =
1

AHl ρ
H
l M

ρHl −1

t,l

,

where,

Ml,t =

(
L∗t,lh̄− L∗t−1,l(1− δh)h̄

AHl

)1/ρHl

(vi) Compute the price of new office space ql,t = q̇l,tql,t−1, where q̇l,t is given by

q̇l,t =
(
ṡl,tṙl,tḂl,t

)1−ρBl
.

(vii) Compute flow utility uk,r,l,t ≡ u(ck,r,l,t) associated with each choice of residence k

and remote status r given initial residence l.

3. Proceeding backwards from t = T to t = t∗ − 1, solve
≈̂
vwk,r,l,t according to (74) where

ubaselinek,r,l,t∗−2 = uno shockk,r,l,t∗−2.

4. Set sl,T = (δbql,T )/rl,T . Proceeding backwards from t = T − 1 to t = t∗ − 1, solve for

the savings rates sl,t according to (75).

5. Use the constructed sequences to update the guesses for {≈̂vwk,r,l,t}Tt=t∗−1 and {sl,t}Tt=t∗−1

in step 1.

6. Repeat steps 1-5 until convergence.

72



I Evolution of Office Prices

Figure 7: Change in Commercial Real Estate Prices
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Note: Percent change from year prior for the office price index construced from the Attom data
(blue line) and the commercial real estate price index from the International Monetary Fund Fi-
nancial Soundness Indicators International Monetary Fund (2025) (red line). The Attom series
is constructed by averaging the sale price per square foot across observations in the 25th to 75th
percentile in a given year.

J Migration by Remote Workers

In this section, I characterize the migration rate by remote (relative to non-remote) work-

ers. Using data from the 2023 5-year ACS (Ruggles et al., 2024), I estimate the following

regression:

yi = βxi + δXi + εi,

where yi is an indicator equal to one if individual i moved across MSAs in the previous

year, xi is an indicator equal to one if individual i is a remote worker, and Xi is a vector of

controls.74 Controls include the average home price in the year prior to the survey in both

the origin and destination MSA from the Zillow Home Value Index, the 2018 marginal tax

rate in both the origin and destination MSA from the NBER Taxsim tables, individual i’s

age, sex, and income, as well as dummies for whether individual i is married, has children,

graduated college, lived in their state of birth one year ago, was married in the last year, was

divorced or widowed in the last year, had children in the last year, and owned their home.

Additionally, I control for the individual’s race, their MSA of residence one year before the

74I assume an individual moves MSAs if they report having moved houses, their MSA at the time of the
survey is different from their MSA the year prior, and both their present and previous MSA are identifiable.
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Table 7: Migration by remote workers

Remote 0.011∗∗∗ College 0.015∗∗∗

(0.000) (0.000)
log Homeprice (origin) 0.117∗∗∗ Tax (origin) 0.004∗∗∗

(0.000) (0.000)
log Homeprice (destination) −0.113∗∗∗ Tax (destination) −0.004∗∗∗

(0.000) (0.000)
Age −0.001∗∗∗ Birthplace −0.017∗∗∗

(0.000) (0.000)
Female −0.002∗∗∗ Married in year 0.015∗∗∗

(0.000) (0.000)
log Income 0.000 Divorced/widowed in year 0.010∗∗∗

(0.000) (0.000)
Married −0.001∗∗∗ Owns home −0.026∗∗∗

(0.000) (0.000)
Children −0.014∗∗∗ Child in year 0.001∗∗

(0.000) (0.000)

Race controls Yes
Origin controls Yes
Desination controls Yes
Year controls Yes
N 10980892

Note: Controls include the average home price in the year prior to the survey in both the origin and
destination MSA, the tax rate in both the origin and destination MSA, the individual’s age, sex, and
income, as well as dummies for whether the individual is married, has children, graduated college,
lived in their state of birth one year ago, was married in the last year, was divorced or widowed
in the last year, had children in the last year, and owned their home. Additional controls include
the individual’s race, their MSA of residence one year before the survey, their MSA of residence at
the time of the survey, and the year of the survey. Standard errors account for clustering at the
primary sampling unit, stratification, and person weights, following the ACS survey design.

survey, their MSA of residence at the time of the survey, and the year of the survey. Table

7 shows the estimation results.

The estimated coefficient β̂ indicates that, conditional on demographic characteristics

as well as origin and destination attributes, remote workers are 1.1% more likely to move

between MSAs than their non-remote counterparts. Given that the unconditional average

share of movers in the sample is 2.4%, this estimate represents a meaningful increase in the

likelihood of moving.

K MSA Sample

The quantitative model features 234 of the over 300 MSAs in the U.S. To select this sample,

I start with the full set of MSAs. From this, I drop those MSAs which are missing supply
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elasticity estimates from Baum-Snow and Han (2024) (114 MSAs), those which are not

included in the 2018 or 2019 ACS (2 MSAs), those which report zero remote workers in the

2018 ACS (5 MSAs), those missing from the Attom commercial office data (27 MSAs), and

those missing from the Zillow data (1 MSA). In addition, I require that regions satisfy the

following condition:

L∗l,0 − L∗l,−1(1− δh) > 0, (76)

where L∗l,0 and L∗l,−1 are constructed using ACS data on regional populations and individuals’

migration decisions (see discussion in Section 4.2). This ensures that the housing market

clearing condition in (19) is satisfied. One MSA fails condition (76) and is dropped from the

analysis. Table 9 lists the MSAs included in the analysis.

L Office Price Distribution

To construct the initial office price distribution {ql,−1}Ll=1, I first take the average real sale

price per square foot for transactions involving an office building in a region, excluding the

bottom and top 10 percent of transactions in each region, for the period 2010 to 2018. I clas-

sify a building in the Attom data as an office building if Attom assigns it to one of the follow-

ing categories: “Commercial Office (General)”, “Office Building”, “Office Building (Multi-

Story)”, “Professional Building (Legal, Insurance, Real Estate, Business)”, “Professional

Building (Multi-Story)”, “Skyscraper/High-Rise (Commercial Offices)”, or “Store/Office

(Mixed Use)”. Office prices in the model are then chosen such that the average price of

real estate in a region scaled by the region’s (non-construction) GDP in the model matches

its counterpart in the data,
qdatal,−1

Y Cdata
l,−1

=
qmodell,−1

Y Cmodel
l,−1

,

where Y Cdata
l,−1 is collected from local GDP estimates from the BEA, and computed as the

difference between total GDP in region l and the region l contribution to GDP from the

construction sector.75

75For MSAs missing construction industry GDP, I substitute the construction share of total GDP for the
U.S. as a whole.
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M Additional Results

M.1 Price Effect Decomposition

The aggregate residential and commercial price effects of the remote shock reported in Section

5.1 are
p̄baselinet

p̄no shockt

,
q̄baselinet

q̄no shockt

.

Notice,

p̄baselinet − p̄no shockt =
L∑
l=1

ωh,baselinel,t (pbaselinel,t − pno shockl,t ) +
L∑
l=1

(ωh,baselinel,t − ωh,no shockl,t )pno shockl,t ,

and

p̄baselinet

p̄no shockt

= 1 +
p̄baselinet − p̄no shockt

p̄no shockt

= 1 +

∑L
l=1 ω

h,baseline
l,t (pbaselinel,t − pno shockl,t )

p̄no shockt︸ ︷︷ ︸
Price contribution

+

∑L
l=1(ωh,baselinel,t − ωh,no shockl,t )pno shockl,t

p̄no shockt︸ ︷︷ ︸
Weight contribution

.

A similar decomposition holds for the commercial office price index:

q̄baselinet

q̄no shockt

= = 1 +

∑L
l=1 ω

b,baseline
l,t (qbaselinel,t − qno shockl,t )

q̄no shockt︸ ︷︷ ︸
Price contribution

+

∑L
l=1(ωb,baselinel,t − ωb,no shockl,t )qno shockl,t

q̄no shockt︸ ︷︷ ︸
Weight contribution

.

Figure 8: Decomposition of remote shock effect into contribution from price and weight
changes.
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Figure 8 shows the decomposition of the effect of the remote shock (Figure 1, Panel B)

into its contributions from prices and weights. The figure reveals that the aggregate effects

of the remote shock are driven primarily by shifts in prices rather than weights.

M.2 Geography of Price Effects

Figure 9: Price effect of remote shock, with red indicating a positive effect, blue indicating
a negative effect, and circle size indicating the magnitude of the effect.

Figure 9 shows the price effect of the remote shock, with blue indicating a negative

effect, red indicating a positive effect, and circle size reflecting the magnitude of the change.

Panel A shows some regional patterns emerge in the residential real estate market. Negative

effects dominate in several Midwestern states, particularly Illinois, Indiana, Michigan, and

Wisconsin. By contrast, positive effects are more common across the South (e.g., Florida,

the Carolinas) and the Mountain West (e.g., Colorado, Nevada). Cities along the West Coast

and in the Northeast exhibit a more mixed response, with large positive and negative effects

present in both regions. Panel B shows that positive effects in the commercial office sector

are much rarer, with only a handful of small MSAs showing positive effects (average 2018

population = 175,489).

Table 8 shows the relationship between pre-shock conditions, and the real estate price

effects of the remote shock. Column 1 of Panel A shows that, after controlling for period 0

residential and commercial prices, those regions which saw greater population growth before

the remote shock tend to see positive residential price effects of the remote shock. Column 2

seperates this growth into remote and non-remote population growth. This reveals that the

positive correlation arises from remote migration, while the effect of non-remote migration

is insignificant.

Panel B considers the commercial price effect. It shows that growth in the commercial

office stock pre-shock is positively correlated with the commercial price effect of the remote

shock, though the effect is small.
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Table 8: Initial Conditions and Price Effects of Remote Shock

Panel A: Log Residential Price Effect
(1) (2)

Log Population Growth 0.938∗

(0.558)
Log Rem. Population Growth 0.090∗∗

(0.039)
Log Non-Rem. Population Growth 0.244

(0.489)
Log Office Growth 0.003 0.003

(0.018) (0.017)
Log Initial Res. Prices 0.046 0.054

(0.033) (0.033)
Log Initial Com. Prices 0.005 0.004

(0.021) (0.021)

Panel B: Log Com. Price Effect
(1) (2)

Log Labor Force Growth −0.026
(0.086)

Log Rem. Labor Force Growth −0.000
(0.005)

Log Non-Rem. Labor Force Growth −0.074
(0.082)

Log Office Growth 0.008∗ 0.007∗

(0.004) (0.004)
Log Initial Res. Prices −0.006 −0.006

(0.007) (0.007)
Log Initial Com. Prices 0.006 0.006

(0.005) (0.005)

Observations 234 234

Note: Effect of pre-shock factors on the price effects of the remote shock. All growth rates are for
the period t = −1 to t = 0, while the price distributions correspond to t = 0. Robust standard
errors are in parantheses.

M.3 Change in Real Estate Prices
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Table 9: Price effect of the remote shock

MSA Residential Price Effect (%) Commercial Price Effect (%)

Abilene 9% −1%

Akron −16% −7%

Albany 13% −1%

Albany GA 5% −1%

Albuquerque −13% −7%

Alexandria LA −2% −2%

Allentown 0% −3%

Amarillo 13% 0%

Anniston −7% −3%

Appleton −46% −15%

Asheville 8% −4%

Athens GA −2% −5%

Atlanta −3% −7%

Atlantic City −16% −2%

Augusta −3% −3%

Austin 27% −3%

Bakersfield −10% −4%

Baltimore −12% −6%

Bangor 23% 2%

Baton Rouge 8% −2%

Battle Creek −7% −3%

Beaumont −10% −4%

Bellingham 16% −0%

Billings 11% −3%

Binghamton 18% 1%

Birmingham −1% −3%

Bismarck 5% −2%

Bloomington IN −7% −3%

Boise 20% −1%

Boston −3% −5%

Bridgeport −26% −8%

Buffalo −11% −4%

Burlington NC −17% −5%

Canton 15% −1%

Cape Coral 42% 1%

Casper 3% −4%

Cedar Rapids 9% −3%

Champaign −2% −3%

Charleston SC 20% 0%

Continued on next page
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Table 9 – continued from previous page

MSA Residential Price Effect (%) Commercial Price Effect (%)

Charlotte 4% −4%

Charlottesville −3% −5%

Chattanooga 15% −2%

Cheyenne 14% −2%

Chicago −1% −4%

Chico −9% −6%

Cincinnati 1% −4%

Clarksville −4% −4%

Cleveland −12% −5%

Colorado Springs 6% −6%

Columbia 1% −3%

Columbia MO −10% −6%

Columbus 13% −2%

Corpus Christi −10% −6%

Cumberland −5% −2%

Dallas 7% −4%

Davenport −11% −5%

Daytona Beach 3% −4%

Decatur AL −24% −7%

Decatur IL −8% −2%

Denver 16% −4%

Des Moines 18% −1%

Destin −6% −6%

Detroit −12% −5%

Dothan 5% −2%

Dubuque 2% −3%

Duluth −18% −7%

Eau Claire 16% −0%

El Paso −14% −6%

Elkhart −10% −5%

Elmira −26% −9%

Erie −3% −3%

Evansville −15% −5%

Fargo −4% −4%

Fayetteville AR 1% −3%

Fayetteville NC 5% −1%

Flint −10% −4%

Florence SC 19% −0%

Fort Collins 14% −3%

Fort Smith 1% −1%

Continued on next page
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Table 9 – continued from previous page

MSA Residential Price Effect (%) Commercial Price Effect (%)

Fort Wayne −10% −5%

Fresno −1% −4%

Gadsden −4% −2%

Gainesville −3% −4%

Glens Falls 3% −1%

Goldsboro −7% −4%

Grand Junction 11% −6%

Grand Rapids −1% −3%

Great Falls −7% −5%

Green Bay −15% −5%

Greensboro −19% −8%

Greenville 19% −0%

Gulfport −5% −3%

Hagerstown −11% −6%

Harrisburg −3% −5%

Hartford −13% −6%

Hattiesburg −8% −3%

Hickory 2% −2%

Houston 2% −4%

Huntington 2% −2%

Huntsville 6% −1%

Indianapolis −7% −5%

Iowa City −11% −8%

Jackson MI −2% −1%

Jackson MS 8% −1%

Jackson TN −6% −4%

Janesville −14% −5%

Joplin −4% −3%

Kalamazoo −22% −8%

Kansas City −7% −6%

Kennewick 3% −1%

Kingsport −2% −3%

Knoxville 14% −2%

Kokomo −21% −7%

La Crosse 3% −4%

Lafayette IN −15% −5%

Lafayette LA 11% −1%

Lake Charles 0% −2%

Lakeland −6% −5%

Lancaster 7% −2%

Continued on next page
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Table 9 – continued from previous page

MSA Residential Price Effect (%) Commercial Price Effect (%)

Lansing −17% −7%

Laredo 2% −3%

Las Cruces 31% 6%

Las Vegas 14% −2%

Lawrence −6% −5%

Lawton −5% −4%

Lexington 5% −3%

Lima −0% −1%

Lincoln −11% −5%

Little Rock −7% −4%

Longview WA −13% −7%

Los Angeles 3% −4%

Louisville 1% −3%

Lubbock −4% −4%

Lynchburg −7% −3%

Macon −5% −4%

Madison −0% −3%

Mansfield 0% −3%

McAllen −3% −4%

Medford −25% −12%

Memphis −10% −5%

Miami 6% −3%

Milwaukee −9% −5%

Minneapolis −8% −6%

Missoula 5% −3%

Mobile −9% −6%

Modesto −6% −3%

Monroe −4% −1%

Montgomery −9% −5%

Muncie −13% −5%

Naples 13% −2%

New Haven −8% −4%

New London −3% −3%

New Orleans 2% −4%

New York −14% −6%

North Port 8% −3%

Ocala 13% −0%

Oklahoma City −13% −6%

Olympia −9% −6%

Omaha 17% −2%

Continued on next page
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Table 9 – continued from previous page

MSA Residential Price Effect (%) Commercial Price Effect (%)

Orlando 17% −1%

Palm Bay 2% −4%

Panama City 5% −4%

Parkersburg −11% −5%

Pensacola 36% 1%

Peoria −7% −3%

Philadelphia −6% −5%

Phoenix 4% −5%

Pine Bluff −3% −2%

Pittsburgh −5% −5%

Pittsfield 26% 2%

Portland 10% −4%

Portland ME 8% −3%

Providence 3% −3%

Provo −10% −8%

Raleigh 6% −5%

Reading 0% −3%

Redding 2% −3%

Reno 41% 2%

Richmond −9% −6%

Roanoke −31% −12%

Rochester −7% −4%

Rochester MN 27% 1%

Rockford −3% −3%

Rome 3% −2%

Sacramento 4% −4%

Salinas 37% 2%

Salt Lake City −7% −6%

San Angelo −14% −7%

San Antonio 3% −4%

San Diego −6% −7%

San Francisco −23% −9%

Santa Barbara 10% −3%

Santa Fe −9% −6%

Savannah 1% −3%

Scranton 31% 2%

Seattle −6% −6%

Sheboygan 1% −0%

Sioux City −2% −3%

Sioux Falls 2% −3%

Continued on next page
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Table 9 – continued from previous page

MSA Residential Price Effect (%) Commercial Price Effect (%)

Spartanburg 12% 0%

Spokane 5% −4%

Springfield MA 9% −2%

Springfield MO −3% −3%

St. Joseph −5% −3%

St. Louis −13% −5%

State College 22% 2%

Stockton −24% −7%

Syracuse 4% −3%

Tallahassee −2% −5%

Tampa 21% −3%

Terre Haute −7% −2%

Texarkana 10% −1%

Toledo 1% −2%

Topeka −21% −7%

Trenton 12% −1%

Tucson −1% −5%

Tulsa −14% −6%

Tuscaloosa −10% −3%

Tyler 10% −4%

Victoria −3% −4%

Virginia Beach −0% −4%

Visalia −9% −4%

Washington DC −9% −6%

Waterloo −1% −5%

Wheeling −7% −4%

Wichita −6% −4%

Wichita Falls −31% −13%

Williamsport −3% −3%

Wilmington NC 12% −3%

Worcester 8% −5%

Yakima −19% −7%

York −9% −5%

Youngstown 2% −3%

Yuma 9% 0%
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M.4 Model Extension: Regional Externalities

The benchmark model abstracts from regional externalities tied to local population size.

However, the urban literature has highlighted their quantitative importance.76 In this sec-

tion, I assess the robustness of the model’s quantitative predictions when incorporating

externalities in both local productivity and amenities.

Consider an environment where TFP in the tradable sector, ACl,t, depends on both an

exogenous component al and an endogenous component determined by the size of the local

labor force:

ACl,t = alL
λ
l,t, (77)

where λ ≥ 0 captures the elasticity of productivity with respect to local labor force size,

Ll,t = Nl,t + Rl,t. This specification reflects agglomeration forces arising from mechanisms

such as knowledge spillovers or collaborative interactions among workers.77 I also allow

amenities to depend on population. Specifically, the amenity value of residing in region l is

given by Xl,t = ln(X̃l,t), where X̃l,t is a function of an exogenous shifter xl and a population-

dependent term:

X̃l,t = xl
(
L∗l,t
)κ
. (78)

A value κ ≥ 0 implies that a larger population increases the amenity value of l (e.g., via

greater consumer variety or improved public goods provision), while κ ≤ 0 implies negative

effects (e.g., congestion, pollution, or traffic). When λ = κ = 0, the model collapses to the

benchmark specification above. Following Ahlfeldt and Pietrostefani (2019), I set λ = 0.06

and κ = 0.03, which correspond to the average values reported in their meta-analysis.78 I

then recalibrate the remaining parameters following the procedure described in Section 4.3

to ensure internal model consistency with these values.

Table 10 reports the real estate price effects of the remote shock under both the bench-

mark model and the model with local productivity and amenity spillovers. Across all MSAs,

the average residential price effect decreases from −0.75 to −7.38. Similarly, the average

76Notably, Allen and Donaldson (2020) show that in a dynamic model with forward-looking agents, even
small and temporary shocks can generate permanent effects when agglomeration externalities are present.
In a model of remote work, Monte et al. (2023) show that the interaction between agglomeration forces and
remote productivity can lead to multiple stationary equilibria.

77Equation (77) implies that both remote and non-remote workers contribute equally to agglomeration
in production. While one might argue that remote workers contribute less—due to fewer opportunities for
face-to-face interaction—there is limited empirical evidence on their relative impact. Given this uncertainty,
I adopt (77) as a plausible benchmark.

78See Table 3 in Ahlfeldt and Pietrostefani (2019). Larger values of λ have been used in the literature (e.g.,
Allen and Donaldson 2020; Ahlfeldt et al. 2015; Heblich et al. 2020), but I adopt a smaller value given that
the unit of analysis is the MSA, rather than neighborhoods or counties. M. A. Davis et al. (2014) estimate
a smaller elasticity (0.04) at the city level.
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Table 10: Real Estate Price Effects with Regional Externalities

Benchmark Externalities Difference

Residential Price Effect
All MSAs −0.75 −7.38 −6.64
Top 25% −1.19 −1.07 0.12
Middle 50% 0.31 −7.56 −7.86
Bottom 25% −2.40 −13.25 −10.85

Commercial Price Effect
All MSAs −3.68 −5.18 −1.50
Top 25% −4.53 −4.54 −0.02
Middle 50% −3.42 −5.13 −1.71
Bottom 25% −3.38 −5.90 −2.53

Correlation
All MSAs 0.83 0.81 −0.02
Top 25% 0.80 0.83 0.03
Middle 50% 0.89 0.85 −0.04
Bottom 25% 0.80 0.81 0.01

Note: Long-run real estate price effects of the remote shock under the benchmark model, and the
model with regional externalities. The correlation between residential and commercial office price
effects is also shown. Statistics are reported for both the (unweighted) average across all regions, and
separately for the top 25%, middle 50%, and bottom 25% of regions by 2019 residential population.

commercial office price effect declines from −3.68 to −5.18. The impact of the externalities,

however, varies across regions. In the top 25% of MSAs by 2019 population, the inclusion

of the externalities leads to only modest changes in the remote shock’s price effects. By

contrast, the middle 50% and bottom 25% of MSAs experience substantially larger changes.

For residential real estate, the average effect falls from 0.31 to −7.56 in the middle group

and from −2.40 to −13.25 in the smallest MSAs. Commercial office prices show a similar

pattern, declining from −3.42 to −5.13 in the middle group and from −3.38 to −5.90 in the

smallest MSAs. Despite these heterogeneous effects, the strong correlation between residen-

tial and commercial office price responses remains intact. Overall, the results indicate that

the benchmark model’s implications are robust for the largest regions, while in mid-sized

and small MSAs, the remote shock’s impact on real estate prices becomes more negative

once local productivity and amenity spillovers are taken into account.

N Inspecting the Mechanism

This section details the seven counterfactual exercises used in Section 5.3.
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(i) Set period t = 0 remote migration rates equal to their non-remote counterpart:

πk,R,l,0 = πk,N,l,0, ∀k, l.

(ii) Set the worker discount factor β = 0.79

(iii) Set the elasticity of substition σ = 100.

(iv) Set period t = −1 populations to their average:

L∗l,−1 =
1

L
, ∀l.

(v) Set period t = 0 residential prices equal to their weighted average, with weights given

by the t = −1 residential population distribution:

pl,0 =
L∑
k=1

L∗k,−1pk,0, ∀l.

Update residential contruction productivity AHl according to (36).

(vi) Set period t = −1 commercial office space equal to its average:

Bl,−1 =
1

L

L∑
k=1

Bk,−1, ∀l.

(vii) Set period t = −1 commercial office prices equal to their weighted average, with weights

given by the t = −1 office distribution:

ql,−1 =
L∑
k=1

Bk,−1∑L
j=1Bj,−1

qk,−1, ∀l.

O Unified Real Estate Markets

Suppose real estate used by workers for a residence is perfectly substitutable with that used

by firms for production. Market clearing in the local real estate market then becomes:

(L∗l,t − L∗l,t−1(1− δh))h̄+ ψxl,t = Y uni
l,t ,

79I leave the discount factor for commercial owners unchanged.
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where Y uni
l,t is production of the unified floorspace,

Y uni
l,t = Aunil (Muni

l,t )ρ
uni
l (P uni

l,t )1−ρunil .

In addition, the local owner’s budget constraint (8) is updated to reflect the new price of

floorspace:

col,t + punil,t ψxl,t = rl,tbl,t.

The change in real estate prices from period t− 1 to t is given by

ṗunil,t =
punil,t

punil,t−1

=
(
Ṁuni

l,t

)1−ρunil

=

(
(L∗l,t − L∗l,t−1(1− δh))h̄+ ψxl,t

(L∗l,t−1 − L∗l,t−2(1− δh))h̄+ ψxl,t−1

)(1−ρunil )/ρunil

=

 (L∗l,t − L∗l,t−1(1− δh))h̄+
ψsl,trl,tBl,t

punil,t

(L∗l,t−1 − L∗l,t−2(1− δh))h̄+
ψsl,t−1rl,t−1Bl,t−1

punil,t−1

(1−ρunil )/ρunil

.

As in the benchmark model, I set P uni
l,t = P̄ uni

l,t = 1. Further, I set ρunil to their values

used in the benchmark analysis, and solve the model in time-differences to avoid estimating

productivities Aunil . All other parameters are identical to their counterparts in the benchmark

model calibration. To initialize the economy, I assume the t = −1 price of local real estate

is a weighted average of 2018 residential price from Zillow and the 2018 commercial office

price from Attom, with weights given by the stock of each floorspace type:

punil,−1 =
L∗datal,−1 h̄p

data
l,−1 +Bdata

l,−1 q
data
l,−1

L∗datal,−1 h̄+ ψBdata
l,−1

.

P Empirical Evidence
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Figure 10: Event Study

P.1 Event Study

I estimate the effect of exposure to the remote shock using an event study design. Each

regression takes the form:

Yl,t =
2023∑

τ=2015

δτ ln(Expl) · I (t = τ) + βXl,t + θt + ζl + εl,t,

where Yl,t is an outcome, Expl is the MSA exposure to the remote shock, Xl,t is a vector of

controls, zetal are region fixed effects, and θt are time fixed effects. Figure 10 shows results,

where, in Panel A the outcome is the log remote share of employment, and in Panel B the

outcome is the log average sale price of commercial office space. The figure confirms no

significant effect of the remote exposure pre remote shock (2020).
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